Current NAMs applied to chemical toxicology evaluation

Data types and **regulatory relevance**

Silvia Dominguez, Jérémie Théolier, & Samuel Godefroy

Scoping review

	Classification	Number of publications	Affiliations included
\mathbb{N}	JECFA	25	JECFA
	OECD	15	Health Canada; BIAC; EU/JRC; ICAPO; EU ToxRisk; OECD "project team"; Academic or regulator related to OECD
	Academic	12	Academic only (not agency-related)
	US EPA	11	US EPA; Academic related to US EPA
	EU-level agencies/initiatives	10	EFSA (scientific opinions/reports, but not safety evaluations); EC; EU ToxRisk; Academic related to EU agencies/initiatives
	European national agencies	5	UK FSA; German Federal Institute for Risk Assessment; National Institute for Public Health and the Environment - The Netherlands; The Norwegian Institute of Public Health; Academic related to European national agencies
	China National Center for Food Safety Risk Assessment (CFSA)	4	CFSA; Academic related to CFSA
	Total	82	

Types and number of NAMs used

• If used in combination with traditional methods, only NAMs-related data was extracted

Test system / approach

• Complex

• Broad categories

NAM type	Test system/approach	Number of publications
In vitro (n = 44)	Human cells / tissue models	19
	Battery assays / High throughput screening	13
	Mammalian cells / microsomes	7
	Other*	8
In silico (n = 39)	Structure-based (Grouping / Clustering / Read across / QSAR / Molecular docking)	19
	Metabolism-based (PBK models, QIVIVE, BMD models)	17
	Other predictive models (AO, toxicity, risk)	8
	Other*	6
	Toxicity database	5
Omics (n = 29)	Proteomics	21
	Transcriptomics	6
	Other*	2

Test system / approach

In vitro

- Broad range of outputs / applications
- Systems with increasing levels of complexity
 - Mimic responses in humans
- Sets of assays
 - High throughput, battery
 - Purpose, scale, method

2D cell culture

Cells come into contact with the surface of the culturing dish. Contact with ECM occurs only on one side.

Yun et al. (2023)

3D cell culture Scaffold

Physiological cell-cell interactions and cell-ECM interactions are active. Exhibits drug resistance similar to *in vivo*.

Test system / approach: in silico

- Structure-based
- Predicted toxicity of datapoor chemicals
- Hazard ID, prioritization

Test system / approach: in silico

- Metabolism-based
- Require toxicokinetics input data
- Dose = hazard characterization

Adverse Outcome Pathways (AOPs)

- Classic toxicology: IS this chemical toxic?
- With AOPs: **HOW** does it lead to toxicity?
- Link a molecular-level event to an adverse effect = predict toxicity
- Used in 1/3 of the reviewed documents, mostly for pesticides

Hazard ID: biological plausibility

Hazard characterization: from key events' doses to exposure levels

NAMs (in vitro, omics) that

correspond to molecular

events in the AOP

In silico NAMs (PBK, molecular docking)

NAMs use per author class

NAMs use per regulatory purpose

- Hazard ID (toxicity): effect of JECFA
- Screening/prioritization for further assessment: US EPA
- Hazard characterization (doses): OECD

Chemicals studied with NAMs

- Food additives: JECFA effect
- Pesticides: OECD
- Multiple: US EPA
- Academic sources: broadest variety of chemical groups

Toxicological endpoints studied with NAMs

Correlation with chemical targets

- Allergenicity, general toxicity: food additives
- Neurotoxicity: pesticides
- Genotoxicity, cytotoxicity: broad range of chemical groups
- Endocrine disruption: simultaneous assessment of multiple chemicals

Conclusions

- General portrait
- Broad coverage from different sources
- Acceptance of screening/prioritization applications
- Hazard characterization: in silico capabilities, need for mechanistic models and input data
- Difference between developments and adoption

Thank you

