

Organized as part of the DIFSC 18th Dubai International Food Safety Conference

Dubai

World

Trade

Centre

Dubai - UAE

Applying Evidence-Based Approaches to Manage Titanium Dioxide as a Food Additive

مبادرة العربيلة وم

Oparera

للدسلور الغذائى

) IUFoST

22 OCTOBER 2024

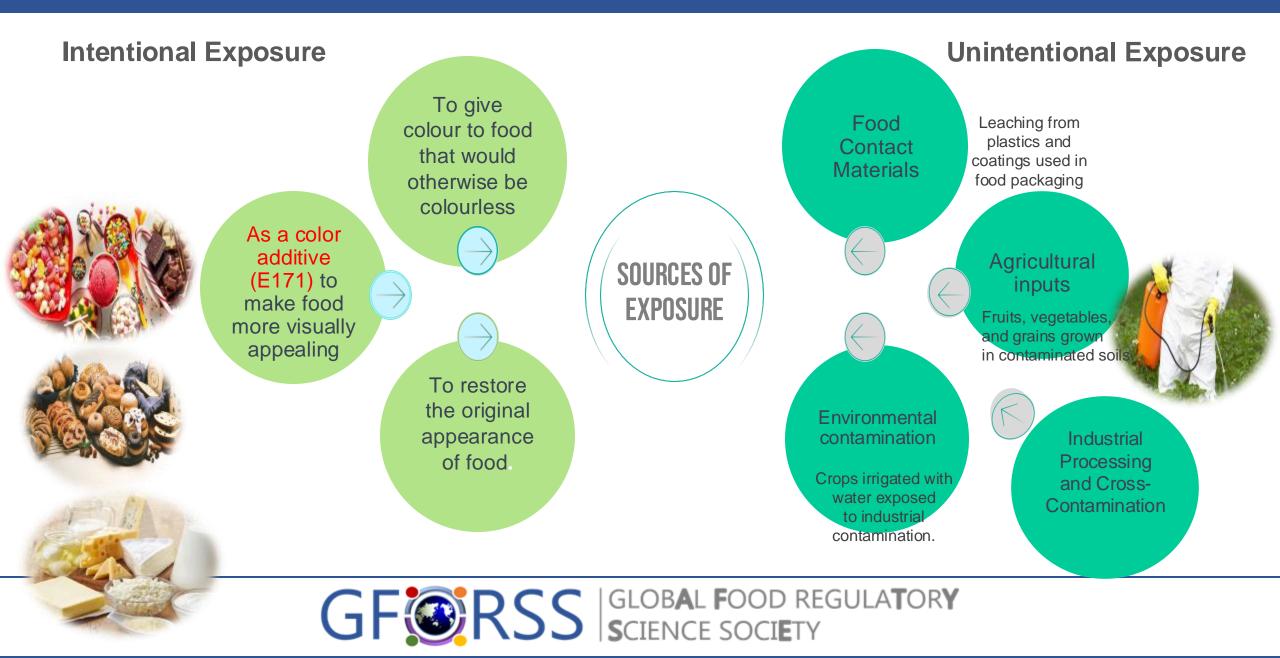
Dr. Wiem Guissouma, GFoRSS Expert, National Agency for Risk Assessment, Tunisia

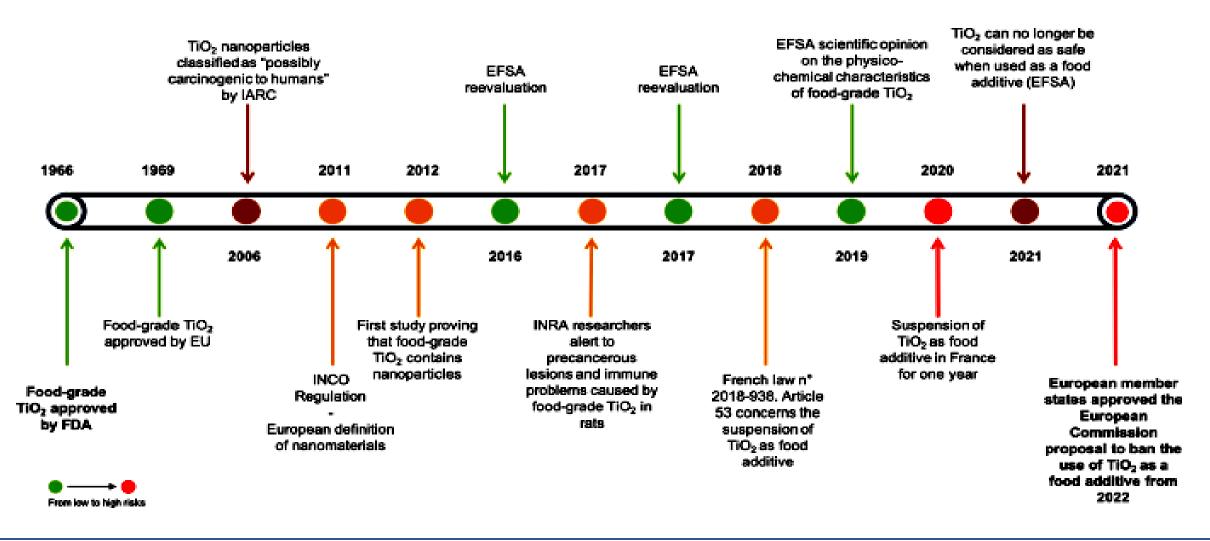
I Contraction

21 - 24

October

2024


Introduction


- Titanium Dioxide (TiO₂), also known as E171, is a mineral used for its bright white color and opacity.
- Widely utilized in food products (e.g., confectionery, dairy, baked goods) to enhance visual appeal.
- Also found in non-food applications such as cosmetics (e.g., sunscreens) and pharmaceuticals (e.g., tablet coatings).
- Recent studies have raised safety concerns, especially regarding nanoparticles.
- Diverse regulatory responses worldwide, reflecting varying approaches to managing **TiO**₂ usage.

GF®RSS GLOBAL FOOD REGULATORY

Sources of Exposure to TiO₂ in Food

Historical Use and EFSA's Assessments

Current Controversies and Health Concerns

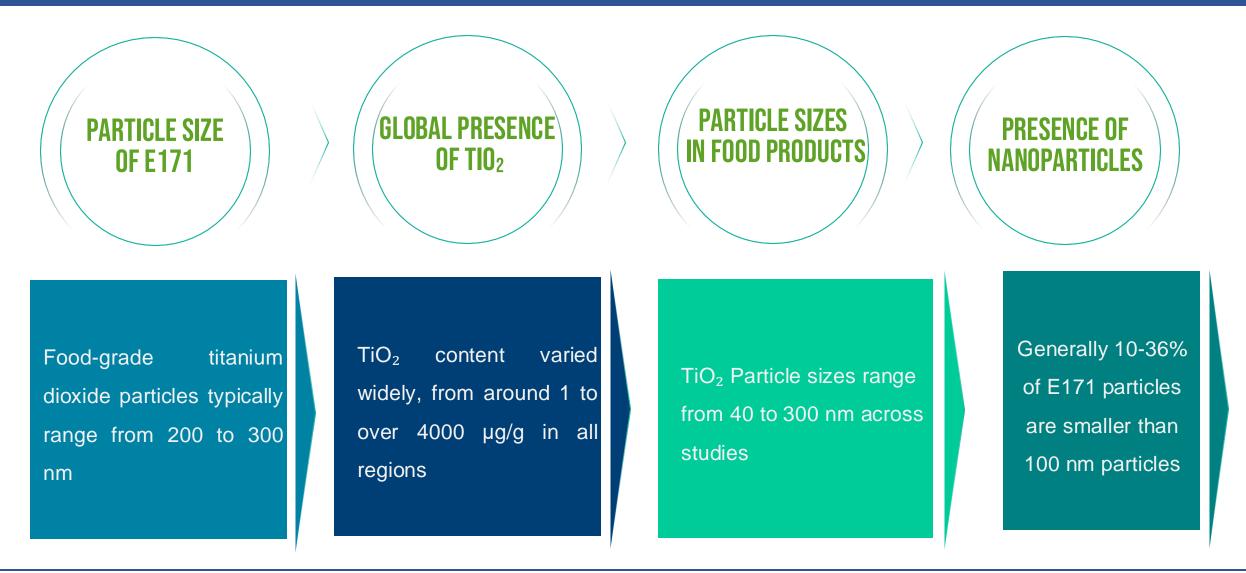
Health Risks Identified in Studies

- Possible Genotoxicity and potential DNA damage
- Possible Accumulation of nanoparticles in human tissues
- Risk to vulnerable populations (e.g., children due to high consumption of sweets)

Public and Industry Reactions

- Public concern about food safety
- Industry concerns about alternatives and production costs

nanoparticles With than smaller being is there 100 concern that they can human penetrate tissues, accumulate in organs, and possibly Safe Titanium Dioxide cause harm over time. Nano Particles 100nm 200nm 300nm



Aspect	(He L. and al., 2022)	(Weir. A. and al., 2012)	(Bachler G. and al., 2015)	(Rompelberg, C., and al., 2016)	(Athinarayanan , J. and al., 2015)	(Peters, R. J. B. and al., 2014)
Study Focus	Characterization of TiO ₂ nanoparticles in food products in China and estimation of dietary exposure.	Investigation of TiO ₂ nanoparticles in food and personal care products in the U.S.	Dietary exposure to TiO ₂ nanoparticles in Europe using a lifetime exposure model.	Dietary exposure to TiO ₂ and TiO ₂ NPs in the Dutch population.	Analysis of TiO ₂ nanoparticles in food products and their potential toxicity in humans.	Investigation of 7 food-grade TiO ₂ materials (E171), 24 food products, and 3 personal care products for TiO ₂ content and particle size.
Food Products Studied	15 Chinese food products, including beverages, fig preserves, jellies, chewing gum, and confectionery.	89 food products, including candies, chewing gum, and other consumer products containing TiO ₂ .	lifetime dietary	Evaluated a range of food products, including sauces, dressings, and confectionery items.	Food products, mainly confectionery and dairy items.	24 food products, including sauces, baked goods, dairy products, and 3 personal care products.

TiO₂ Nanoparticle Studies : State of the Art

Aspect	(He L. and al., 2022)	(Weir. A. and al., 2012)	(Bachler G. and al., 2015)	(Rompelber g, C., and al., 2016)	(Athinaraya nan, J. and al., 2015)	(Peters, R. J. B. and al., 2014)		Aspect	(He L. and al., 2022)	(Weir. A. and al., 2012)	(Bachler G. and al., 2015)	(Rompelber g, C., and al., 2016)	(Athinaraya nan, J. and al., 2015)	(Peters, R. J. B. and al., 2014)					
Mean Particle Size	53.5 to 230.3 nm, average 116.2 nm. Approximatel y 34.7% of the particles were smaller than 100 nm.	TiO ₂ particle size ranged from 40 to 300 nm, with 36% of the particles being nanoparticles	TiO_2 particles smaller than 100 nm were estimated to be a significant fraction of overall intake.	The proportion of nanoparticles (<100 nm) was significant but varied depending on food type.	10–36% of TiO ₂ particles in food-grade additives were nanoparticles	TiO ₂ particle sizes ranged from 60 to 300 nm. Depending on the method, 10- 15% of particles were below	ged Exposure co o co ng b 10- N 7 t	Estimated daily intake of TiO ₂ : 71.31 µg/kg body weight/day. NP intake: 7.75 µg/kg body weight/day.	Estimated daily intake of TiO_2 in the U.S.: 60 μ g/kg body weight/day.	Lifetime exposure to TiO_2 NPs was significant for European consumers.	Dutch dietary intake of TiO_2 NPs ranged from 20 to 80 μ g/kg body weight/day.	Reported similar levels of exposure, though focused on potential toxicity rather than exposure amounts.							
					100 nm.		Key Findings	High TiO ₂ exposure in	Significant nanoparticle	Lifetime exposure	Dutch population at	Significant levels of	All methods used found						
Nanoparticle Fraction	34.7% of TiO ₂ particles in food additives, 55.6% in chewing gum smaller than 100 nm.	36% of the TiO ₂ particles in food products were nanoparticles smaller than 100 nm.	No exact fraction reported, but nanoparticle exposure was considered significant over a	17-35% of TiO ₂ particles in Dutch food products were nanoparticles	10-36% of TiO ₂ particles in food-grade additives were nanoparticles	5-10% of TiO ₂ particles in food and personal care products had sizes below 100 nm.	TiO ₂ particles in food and personal care products had sizes below	eles TiO ₂ particles in food and personal care products had sizes below	cles TiO ₂ particles ade in food and personal care products had sizes below	s TiO ₂ particles in food and personal care products had s sizes below	TiO ₂ particles in food and personal care products had sizes below	iO ₂ particles n food and ersonal care roducts had izes below		children, raising concerns about long- term health impacts due to nanoparticle ingestion.	presence in food, raising concerns about long- term exposure, especially for children.	was substantial, with concerns about nanoparticle accumulatio n in the human body.	risk of substantial TiO_2 nanoparticle exposure, leading to health concerns.	TiO_2 nanoparticle s in food, raising concerns about potential health impacts.	comparable size distributions for TiO ₂ particles, with 10-15% being nanoparticle s in food- grade E171.
TiO ₂ Content in Food	3.2 to 3409.3 µg/g, with chewing gum having the highest concentration s.	TiO ₂ content in U.S. food products (candy, gum) averaged around 1500 μ g/g, with some products at 3000 μ g/g.	lifetime. Not directly reported; focused on overall exposure estimates.	TiO ₂ concentration s in Dutch food products ranged from 1 to 4000 μg/g.	TiO ₂ content was similar to that found in other studies, ranging from 1 to 4000 μ g/g.	Detectable TiO ₂ amounts in 24 of the 27 products, ranging from 0.02 to 9.0 mg TiO ₂ /g product.	LOI	Health Implications	Emphasized the need for stricter regulation and further risk assessment of TiO_2 NPs in Chinese food.	Called for more research into the health effects of TiO_2 nanoparticle s, especially for children.	Highlighted the long- term risk of TiO_2 nanoparticle accumulatio n, with potential genotoxicity concerns.	Need for better regulation and monitoring of TiO_2 NPs in food due to potential health risks.	Raised concerns about the accumulatio n and potential toxicity of TiO_2 nanoparticle s in human tissues.	Raised concerns about the inability of current methods to fully detect nanoparticle s below 20 nm.					

TiO₂ Nanoparticle Studies : State of the Art

FOOD REGULATORY

Comparative Assessment of Unintentional Exposure to (TiO₂)

Aspect	Packaging Materials (Yang, Y. and al., 2015)	Agricultural Inputs (Keller, A. A. and al., 2013)	Environmental Contamination (Gottschalk, F., and al., 2011)
Exposure Source	Leaching from food packaging materials, especially plastics and coatings	Use of TiO_2 in pesticides, fertilizers, and soil amendments	Industrial runoff contaminating water supplies, which are used for irrigation
Exposure Pathway	Direct contact between food and packaging materials	Crops absorbing TiO ₂ nanoparticles from soil and water	Crops absorbing TiO ₂ through contaminated irrigation water
Food Types Affected	Acidic and high-fat foods, due to increased interaction with packaging	Fruits, vegetables, and grains grown in contaminated soil	Crops grown in areas exposed to industrial water contamination
TiO ₂ Exposure Level (mg/kg)	Up to 0.1 mg/kg (depending on packaging, food acidity, and storage conditions)	0.05 to 0.5 mg/kg (in plant tissues depending on exposure and accumulation)	0.01 to 0.1 mg/kg (based on water and soil contamination levels)
Potential Risk Factors	Heat, long-term storage, and acidic foods increase nanoparticle migration	Potential bioaccumulation over time and across seasons	Proximity to industrial activities and long-term water contamination
Regulatory Oversight	Limited focus on nanoparticle leaching from packaging materials	Limited, especially regarding long-term nanoparticle accumulation in crops	Environmental regulation of industrial runoff but limited focus on nanoparticle effects
Key Findings	Leaching is dependent on material composition and food characteristics	Accumulation in plant tissues varies based on exposure but can persist	Long-term contamination of water supplies can lead to gradual TiO ₂ buildup in crops

TiO₂ contamination levels in food can range from **0.01 to 1 mg/kg due to environmental contamination** or leaching from packaging.

Comparison of Regulatory Frameworks

Assessment Criteria	JECFA	EFSA	Comparison and Opinion of		
			Other Risk Assessment		
			Agencies		
ADI (mg/kg bw per day)	Not specified. JECFA reaffirmed the ADI as "not specified," indicating no health risks at typical exposure levels	_	EFSA outlier internationally – Health Canada; US FDA; FSANZ, Japan Food Safety Commission disagree with EFSA Assessment and align with JECFA		
Relevant Studies		concerns about the genotoxic potential of nanoparticles smaller than 100 nm in E171. EFSA focused on uncertainties related to long-term exposure and the	nanoparticle risks with studies where TiO2 nanoparticule proportion is not		
ARfD (mg/kg bw)	Not required due to low bioavailability and no identified short-term risks	No ARfD established	Not relevant for EFSA given the concerns expressed; All other agencies concurwith JECFA		
Relevant Effect	JECFA noted no significant toxicological effects from oral exposure, including no carcinogenicity or reproductive/developmental toxicity. INS 171 was not carcinogenic in 2-year studies at doses up to 7,500 mg/kg bw per day in mice and 2,500 mg/kg bw per day in rats. Available studies also showed no reproductive toxicity at doses of up to 1,000 mg/kg bw per day	from nanoparticle exposure, focusing on unresolved uncertainties regarding genotoxicity. These concerns led to a	reproductive risks, while EFSA emphasized genotoxicity concerns, as a		
Dietary Exposure	JECFA assessed dietary exposure based on mean use levels in 11 food categories. For example, in Europe, P95 exposure estimates for toddlers (1–2 years) could reach 28 mg/kg bw per day. However, JECFA reaffirmed its ADI "not specified" based on the low oral absorption and absence of any identifiable hazard leading to possible use at GMP	to potential long-term health risks, particularly related to DNA damage from	mg/kg bw per day for dietary exposure to		

Regulatory Positions on Titanium Dioxide (E171)

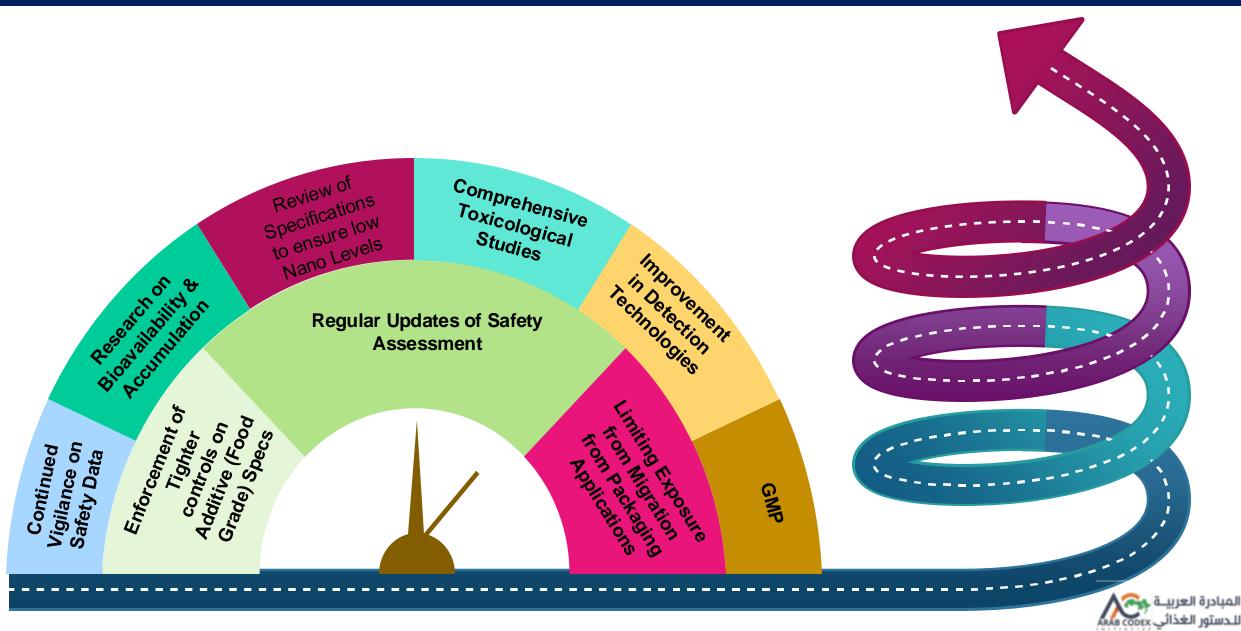
Declared E171 **unsafe** as a food additive due to concerns over potential DNA damage and genotoxicity, leading to a ban in the EU.

Maintained **approval** of E171, calling for more research, with no immediate ban implemented.



Countries Relying on EFSA Assessment

TiO2 banned as a food additive



Pilot study : Establishment of cut-off Level

Min

Countries that Concur with JECFA/Codex Direction

Conclusion

The results of studies showing concers were obtained with materiel that does not represent Food Grade Application

