

Decoding the Complexity: Multiresidue Pesticide Analysis in Food

Khalid Ghaffar

Regional Business Development Manager

Topics to be covered

- Introduction
- Understanding Pesticides
- Multiresidue Pesticide Analysis
- Techniques for Multiresidue Pesticide Analysis
- Conclusion

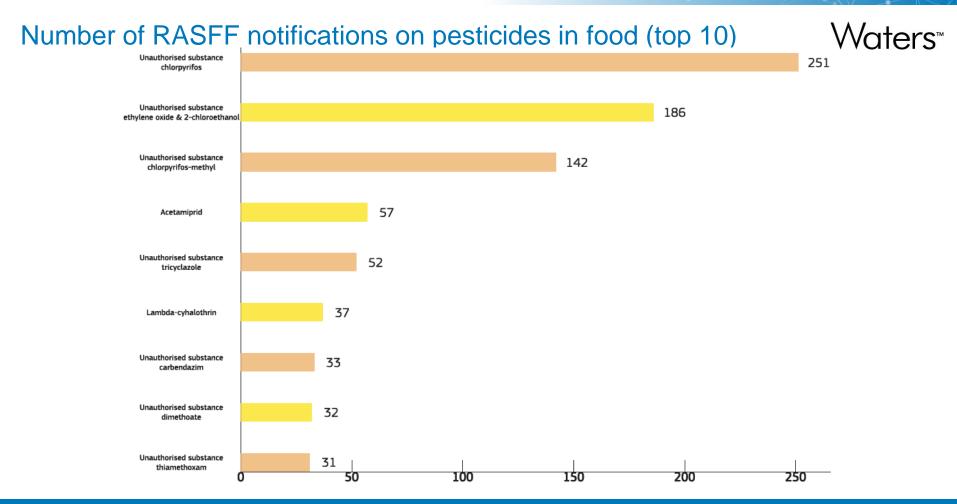
Introduction

Why Pesticides Important?

Pesticide analysis in food safety is of paramount importance for several reasons:

- 1. Protection of Consumer Health: Pesticides, while beneficial for crop protection, can leave residues on food, leading to health issues ranging from immediate symptoms like nausea to long-term problems such as cancer and hormonal imbalance
- 2. Compliance with Regulations: Countries enforce Maximum Residue Limits (MRLs) for pesticides in food, necessitating pesticide analysis to ensure regulatory compliance
- **3. Trade Facilitation:** Pesticide residue analysis certificates are often required for food imports, making such analysis vital for international trade
- 4. Environmental Impact: Pesticide residues can harm the environment by contaminating soil, water, and air. Food analysis for these residues aids in monitoring the environmental impact of farming methods.




RASFF in 2022

- The European Commission published its <u>2022 report</u> of the Alert and Cooperation Network in June 2023
- For RASFF, 2022 ranked second after 2021 regarding the number of original notifications circulated
- In line with 2020 and 2021, pesticide residues was the most important hazard for health-related cases, with 990 RASFF notifications

The top ten most recurrent RASFF notifications in 2022

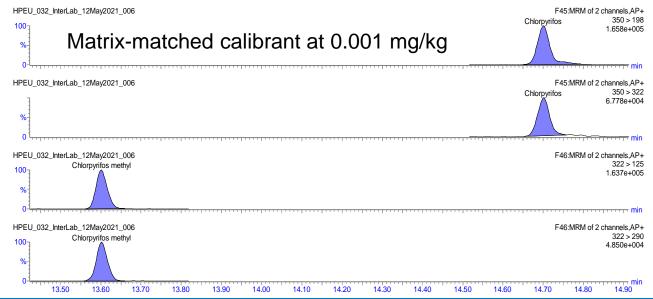
Hazard	Product category	Origin	Total
Pesticide residues	Fruits & vegetables	Türkiye 🧲	299
Salmonella	Poultry meat & poultry meat products	Poland	190
Composition	Food contact material	China 🌔	76
Salmonella	Nuts, nut products and seeds	Nigeria	66
Aflatoxins	Nuts, nut products and seeds	United States 🧧	53
Salmonella	Herbs & Spices	Brazil 🧔	46
Aflatoxins	Cereals & bakery products	Pakistan 🗧	42
Aflatoxins	Nuts, nut products and seeds	Egypt 🛛	40
Aflatoxins	Nuts, nut products and seeds	India 🧧	39
Aflatoxins	Nuts, nut products and seeds	Türkiye 🧲	39

©2024 Waters Corporation

Chlorpyrifos and chlorpyrifos-methyl

- Chlorpyrifos (sometimes referred to as chlorpyrifos-ethyl) and chlorpyrifos-methyl are insecticides used to control insect pests on a range of crops
- In 2008, chlorpyrifos products were authorised for use in more than 88 countries
- The ecotoxicological and genotoxic properties of chlorpyrifos and chlorpyrifosmethyl lead to adverse effects for human health and the environment
- In 2019, the approvals of chlorpyrifos and chlorpyrifos-methyl were withdrawn and the default MRL of 0.01 mg/kg for all commodities became applicable in November 2020 and applies to food produced in the EU and to imports

Chlorpyrifos and chlorpyrifos-methyl



- Non-compliant residues of chlorpyrifos and chlorpyrifos-methyl have also been determined during monitoring for official control in the EU
 - Chlorpyrifos in oranges from Egypt, in grapefruits from Turkiye, in tea leaves from China, in sesame seeds from India and in grape leaves from Egypt
 - Chlorpyrifos-methyl in grapefruits, sweet peppers/bell peppers, mandarins and lemons coming from Turkiye
- These insecticides may still be approved for use in these countries and residues are detected in commodities imported in the EU due to the use of non-approved pesticides for which no import tolerance is in place

Method for the determination of residues of chlorpyrifos and chlorpyrifos-methyl in fruit and vegetables

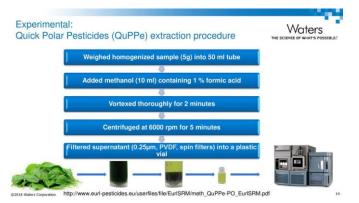
- These analytes are amenable to multi-residue methods such as QuEChERS
- The obtained extracts are typically analysed by either GC-MS/MS or LC-MS/MS
- Chlorpyrifos and chlorpyrifos-methyl were included in <u>Waters app note</u> for high sensitivity analysis of baby food by GC-MS/MS using APGC

Understanding Pesticides

Are all Pesticides same for a chemist?

Differentiating pesticides for analytical testing involves several steps and techniques. Here's a general overview:

- Sample Preparation: In pesticide analysis, the initial step is sample preparation. This includes extraction, cleanup, and concentration of the sample. Depending on the complexity of the matrix, different techniques are used. For complex matrices, SPE and QuEChERS are employed, while direct injection is used for cleaner matrices.
- Use of Analytical Methods: To register their products, pesticide manufacturers are required to create and submit analytical methods for their pesticides. These methods frequently utilize chromatographic techniques like gas chromatography (GC) or liquid chromatography (LC), combined with mass spectrometry (MS) for detection

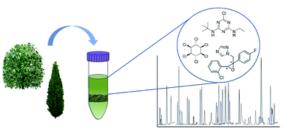

Understanding Pesticides

Are all Pesticides same for a chemist?

Differentiation Based on Chemical Properties: Pesticides have distinct chemical properties like **polarity**, **volatility**, and **stability**. These characteristics influence their behavior during chromatographic separation, enabling the identification and quantification of each pesticide

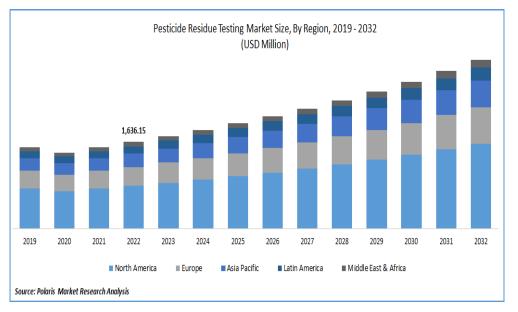
Use of Multi-Residue Methods: Multi-residue methods, designed to be broad-spectrum, are utilized for detecting and quantifying various pesticides in one analysis, accommodating pesticides with diverse chemical properties

The methods and techniques for pesticide analysis can differ based on the analysis requirements, sample type, and pesticides under test. Always adhere to pertinent guidelines and regulations during the analysis

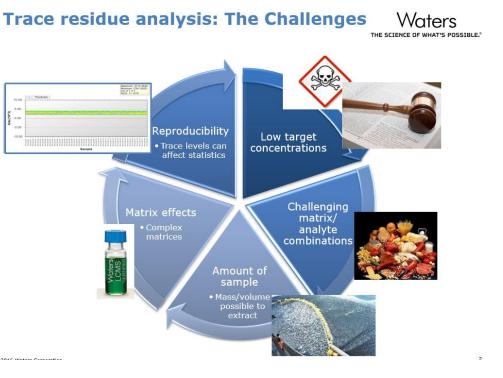


Why the methods should be for *Multiresidue* Pesticide analysis?

- Multi-residue pesticide analysis is a method used to detect and quantify multiple pesticide residues in crop samples
- The term "pesticides" describes a broad class of cropprotecting chemicals, including insecticides, herbicides, and fungicides
- In response to these issues, governments have started monitoring programs to enforce regulations and guarantee food safety. However, the extensive workload involved in testing numerous pesticide and commodity combinations can be daunting
- Multi-residue analysis methods are crucial as they swiftly analyze numerous compounds, resulting in a greater number of food samples being tested for a wider array of pesticides

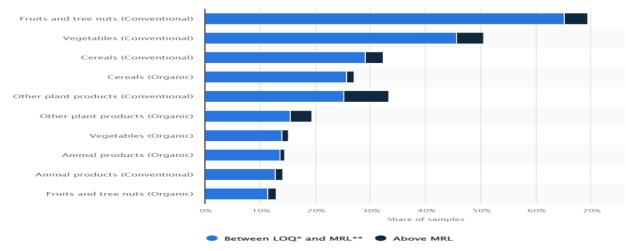


Why the methods should be for *Multiresidue* Pesticide analysis?


 Over 1,100 chemicals are registered as pesticides and are screened using multiclass, multi-residue protocols. Gas Chromatography (GC) and Liquid Chromatography (LC) are frequently used techniques for this multi-residue pesticide analysis

In summary, multi-residue pesticide analysis is a critical tool in modern agriculture for ensuring food safety and regulatory compliance. It allows for the rapid and efficient screening of a large number of samples for a variety of chemical compounds.

Challenges in Multiresidue Pesticide Analysis


- Complexity of the Matrix: The food or crop sample matrix is complex, comprising various substances like organic acids, polyphenols, natural pigments, catechins, flavonols, and metallic/non-metallic elements, among others. This complexity can hinder the detection and quantification of pesticide residues
- Trace Levels of Pesticides: Pesticides, often found in food samples at ultra-trace levels, pose a significant challenge to detect and quantify due to the complexity of the sample matrix

Waters™

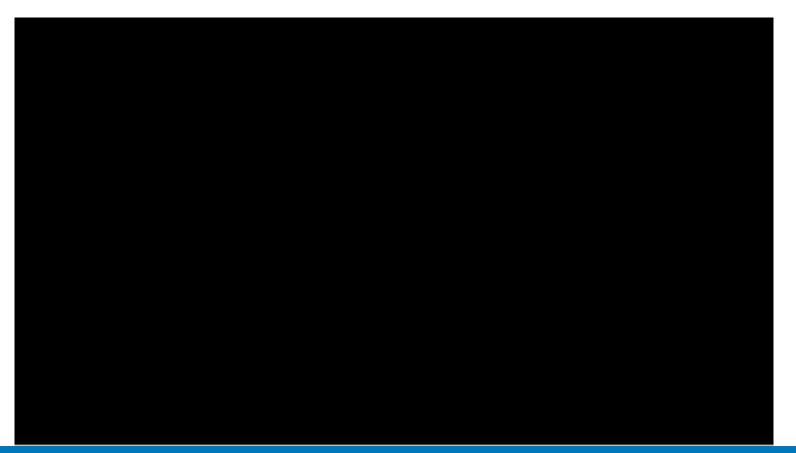
Challenges in Multiresidue Pesticide Analysis

 Regulatory Compliance: Due to growing concerns about pesticides' effects on human health, governments have launched monitoring programs to enforce regulations and safeguard food safety. However, complying with these regulations and ensuring adherence can be challenging

The report released in April 2023 presents data on residues of pesticides found in selected organic and conventional food products in Europe.

Techniques for Multiresidue Pesticide Analysis

Is it possible to have a universal technique for Analysis?


Sample Preparation Technique:

 QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) Procedure: This refers to a popular, fast technique for multi-residue pesticide analysis. This method allows for the examination of numerous compounds, enabling a larger number of food samples to be tested for a wide array of pesticides

Selection of d-SPE Product for Sample Cleanup

Commodity Type	Cleanup Provided	Size	AOAC Method 2007.01	CEN Method 15662
General Fruits and Vegetables (Celery, Head Lettuce, Melon)	Removes polar organic acids, some sugars and lipids	2 mL Tubes 15 mL Tubes	50 mg PSA, 150 mg MgSO₄ Part #186004572 400 mg PSA, 1200 mg MgSO₄	25 mg PSA, 150 mg MgSO₄ Part #186004831 150 mg PSA, 900 mg MgSO₄
			Part #186008072	Part #186004833
Fruits and Vegetables with Fats and Waxes (Cereals, Nuts, Dairy, Avocado)	acids, some sugars,	2 mL Tubes	50 mg PSA, 50mg C ₁₈ , 150 mg MgSO ₄ Part #186004830	25 mg PSA, 25 mg C ₁₈ , 150 mg MgSO ₄ Part #186004832
		15 mL Tubes	400 mg PSA, 400 mg C ₁₈ , 1200 mg MgSO ₄ Part # 186008073	150 mg PSA, 150 mg C ₁₈ , 900mg MgSO ₄ Part #186004834

QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) Waters[™]

Techniques for Multiresidue Pesticide Analysis

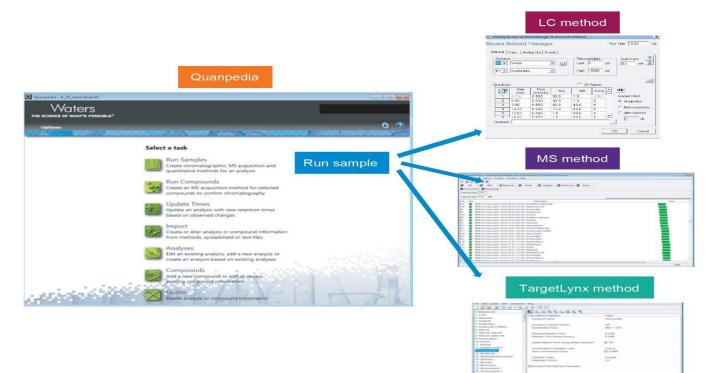
Is it possible to have a universal technique for Analysis?

Here are some of the techniques used for multi-residue pesticide analysis:

 Tandem Mass Spectrometry (LC–MS-MS and GC-MS-MS): Gold Standard techniques for high sensitivity and selectivity.

Tandem Mass Spectrometry (LC–MS-MS and GC-MS-MS)

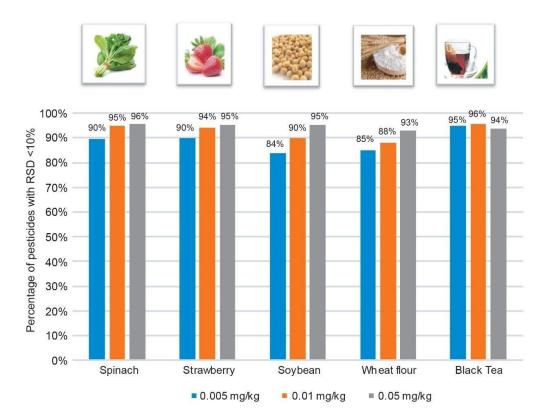
1 1	
	<u>ater</u> s™
V V	


Group	LC1-Q	LC2-Q	GC1-Q	LC3	
Group Details	•QuEChERS compounds •LC amenable •Amenable to standard dSPE cleanup •May also be GC amenable	•QuEChERS compounds •LC amenable •Not amenable to standard dSPE cleanup	•QuEChERS compounds •GC amenable •May be LC amenable •Cleanup will depend on technique	 Non-QuEChERS compounds (too polar) Req different extraction May req. different methods 	
Additional Notes	Compatible with cleanup by PSA, C18 and GCB	Compounds adsorb to PSA, C18 or GCB, giving low recovery %	Natural and synthetic pyrethroids can be done via LC (esp. with APCI)	e.g., 70:25:5 Methanol-Water-Formic acid	
Extraction	QuEChERS	QuEChERS	QuEChERS	Methanol-Water	
Cleanup	YES - 1x dSPE w/ good MS - 2x dSPE w/ avg MS	YES/MAYBE - modified dSPE sorbents - no cleanup (if MS can handle)	YES - same as LC1-Q for LC - SepPak (PSA/carbon) for GC	MAYBE	
Analysis by LC/MS	YES	YES	SOME (pyrethroids)	YES	
Analysis by GC/MS	SOME	NO	YES (esp. organochlorines)	NO	
Examples	Abamectin Bifenazate Etoxazole Fenoxycarb Imazalii Imidacloprid Myclobutanil Paclobutrazol Spiroseaf A and D Spiromesifen Spirotetramat Trifloxystrobin	Acequinocyl (loss to PSA)	Pyrethrins Synthetic pyrethroids (Bifenthrin, Cyfluthrin)	Chlormequat chloride Daminozide	

Waters™ Pesticides 0 Substance classes and technologies PESTICIDES **Pesticides Neutral Pesticides Polar pesticides** Acidic herbicides **QuEChERS** extraction **QuPPe** exctraction QuEChERS extraction ACQUITY UPLC HSS T3 Applications Notes can be found on the FEMS SharePoint Oasis PRIME HLB Cartridge for Clean-up Multiresidue Method for the or dedicated Waters website of QuEChERS Extracts of Sovbean Pods LC Glyphosate Quantification of Pesticides in Prior to UPLC-MS/MS Determination of amenable & Co Fruits, Vegetables, Cereals and Free Acidic Herbicides Black Tea using UPLC-MS/MS SELLING UPLC and APGC Multi Anionic Polar pesticides column Residue Pesticide Analysis on a Single Tandem Quadrupole Oxyanions Mass Spectrometer Platform **Determination of Pesticide Residues** GC in RiceBased Baby Food Using GCamenable MS/MS with APGC[™] After Extraction and Clean Up Using QuEChERS Cationic SELLING ACQUITY UPLC BEH Amide Column Pesticides

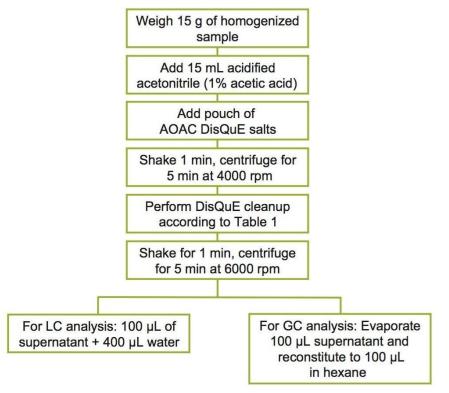
Multi residue method for LC amenable Pesticides

Waters[™]


552 Pesticides detected bellow EU default MRL of 0.01 mg/kg

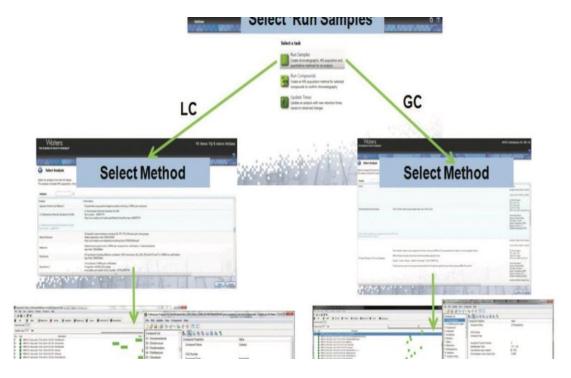
Multi residue method for LC amenable Pesticides

Waters[™]

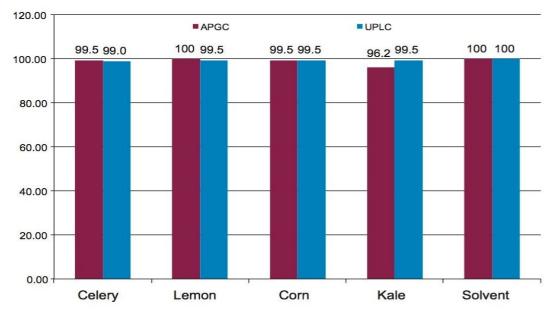

The percentage of pesticides with RSDs <10% in various matrices at 0.005 mg/kg, 0.01 mg/kg, and 0.05 mg/kg

Multi residue method for GC amenable Pesticides

Analysis of fruit and vegetable matrices at legislatively relevant levels of 0.010 mg/kg


QuEChERS extraction was performed according to the official **AOAC method 2007.01** using the DisQuE QuEChERS, AOAC Method Sample Preparation Kit (p/n: 176002922)

Multi residue method for GC amenable Pesticides


Waters™

Analysis of fruit and vegetable matrices at legislatively relevant levels of 0.010 mg/kg

Multi residue method for GC amenable Pesticides

Percent detected in matrix

Matrix matched standards were prepared in celery, lemon, corn and kale over a range of 0.001 to 0.050 mg/kg

Percentage of compounds detected at 0.010 mg/kg in each matrix and associated RSDs.

Food Safety Applications

Multi-residue Pesticide Methods

Performance, workflow optimisation and dedicated methods

×

APGC-MS/MS for Pesticide Testing

Special on highly polar Pesticides

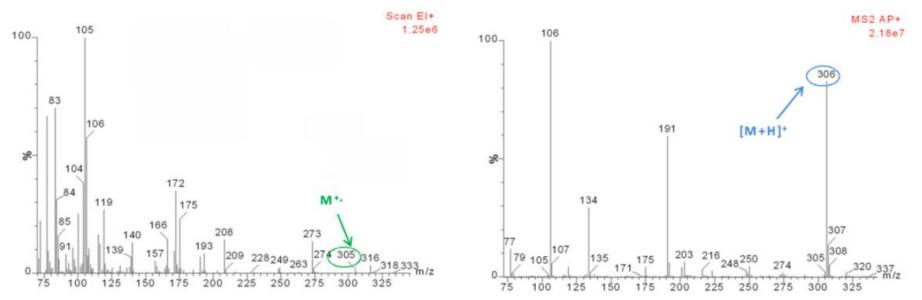
Request your resource kit

Techniques for Multiresidue Pesticide Analysis

Is it possible to have a hybrid technique for Analysis?

Tandem Mass Spectrometry (APGC)

APGC uses a 'soft' ionization technique similar to Atmospheric Pressure Chemical Ionization (APCI). This means the fragmentation of compounds is very low, especially when compared to Electron Ionization (EI). As a result, sensitivity and selectivity are increased, and MRM precursor selection is simplified


These techniques have been developed to address the challenges of screening a large number of samples for a variety of chemical compounds, and their implementation into regular testing programs has become more widespread in recent years.

Techniques for Multiresidue Pesticide Analysis

Is it possible to have a universal technique for Analysis?

Tandem Mass Spectrometry (APGC)

APGC employs a 'soft' ionization method akin to Atmospheric Pressure Chemical Ionization (APCI), resulting in minimal compound fragmentation compared to Electron Ionization (EI). This enhances sensitivity and selectivity and simplifies MRM precursor selection

Atmospheric Pressure Gas Chromatography (APGC)

Comparison of sensitivity: El vs. APGC

tR	Compounds	Molecular formula	М	El	APGC		APGC+H ₂ O
				M•+	M•+	MH+	MH+
4.70	Dichlorvos	C4H7Cl2O4P	220			+++	+++
5.97	Mevinphos	C7H13O6P	224		++	+	++
6.96	Molinate	C9H17NOS	187	+		+++	+++
8.00	Dicrotophos	C8H16NO5P	237	+	++	++	+++
8.24	Monocrotophos	C7H14NO5P	223	+	++	++	+++
8.95	Terbufos	C9H21O2PS3	288				+
9.80	Phosphamidon	C10H19CINO5P	299		+	++	+++
9.76	Endosulfanether	C9H6CI6O	340	+	+	++	++
9.94	Chlorpyriphosmethyl	C7H7CI3NO3PS	321			++	+++
10.77	Chlorpyriphos	C9H11CI3NO3PS	349		+	+++	+++
10.85	Aldrin	C12H8Cl6	362		+	+	++
11.39	Isodrin	C12H8Cl6	362		++	++	++
11.56	Chlorfenvinphos	C12H14Cl3O4P	358			++	+++
11.56	Oxychlordane	C10H4Cl8O	420		+	+	++
11.56	HeptachlorepoxideB	C10H5CI7O	386		+	+	++
12.23	Endosulfanl	C9H6Cl6O3S	404			++	++
12.72	Buprofezin	C16H23N3OS	305	+	++	+++	+++
12.73	Dieldrin	C12H8Cl6O	378	+	++	++	++
13.10	Endrin	C12H8Cl6O	378		++	++	++
13.36	Ethion	C9H22O4P2S4	384		+	+++	+++
14.01	Endosulfansulfate	C9H6Cl6O4S	420		++		++
15.63	Azinphosmethyl	C10H12N3O3PS2	317				+
15.66	Pyriproxyfen	C20H19NO3	321			++	+++
16.04	Fenarimol	C17H12Cl2N2O	330	+	++	+++	+++
16.17	Azinphosethyl	C12H16N3O3PS2	345				+

Conclusion

Waters™

Pesticides are widely used in the cultivation of crops to safeguard against harmful insects and promote crop yields. However, the extensive use of pesticides represents a risk to human health. Therefore, legal frameworks have been established to ensure food safety, including control programs for pesticide residues

Mass Spectrometry (MS) Current targeted MS methods allow the simultaneous determination of hundreds of pesticides, whereas non-targeted MS methods are now applicable to the identification of pesticide metabolites and transformation products

A typical analysis involves a simple sample extraction and dSPE cleanup where the resulting extract is analyzed by **UPLC-MS/MS** and/or **GC-MS/MS** or Hybrid MS/MS (APGC) for rapidly monitoring pesticides and mycotoxins. This method is sensitive, reproducible, and meets or exceeds action levels for pesticides and mycotoxins testing for regulatory requirements

The number of regulated pesticides that are required to be monitored varies by state as do the action limits which range from 0.01 μ g/g (10 ppb) to above 1 μ g/g (1 ppm)[.]

Waters[™]

Thank you!

Khalid_ghaffar@waters.com