From food expenditure to food consumption

Use of Household Budget Surveys as a surrogate to access food consumption data

Dr. Silvia Dominguez - Université Laval, QC, Canada; GFoRSS

Why use food expenditure (\$) to estimate food
 consumption $(\mathrm{g}, \mathrm{ml})$?

Exploiting Household Budget Surveys' food expenditure data

Data requirements

- Composition of each HH (age, gender) $=$ raw data
- Amount spent in food per HH (not population mean) $=$ raw data
- Energy requirements table per age \& gender
- Country-specific food price database
- Conversion factors (cooking, yield) for specific foods
- Regional or country-specific food composition table (kcal/food)

1. Adult male equivalent (AME)

Limitation: we cannot know how much of the household's expenditure corresponds to each member's consumption

Solution: express household composition in terms of energy needs of a reference individual

Energy needs per age and gender

- In this example, adult male $=2600 \mathrm{cal}$
- Express others' energy needs as a fraction of this reference value
- Energy needs for each age/gender group divided by $2600=$ AME

Estimated Calorie Needs per Day by Age, Gender, and Physical Activity Level.

Estimated amounts of calories ${ }^{\text {a }}$ needed to maintain calorie balance for various gender and age groups at three different levels of physical activity. The estimates are rounded to the nearest 200 calories for assignment to a USDA Food Pattern. An individual's calorie needs may be higher or lower than these average estimates.

Build an AIME reference table

- Express household composition in "standardized" units = allow for comparisons

Age	Female		Male	
	Energy (cal)	AME	Energy (cal)	Annt
2	1000	1000/2600 $=0.38$	1000	1000/2600 $=0.38$
3				
...				
19-25				
26-45	2000	2000/2600 $=0.77$	2600	2600/2600 = 1
...				
...				
76+	1800	$1800 / 2600=0.69$	2200	$2200 / 2600=0.85$

Calculate number of AIME per household

- From survey's household composition (raw data) and reference AME table
- Ex. Household l: 1 boy (2 years old) and 1 man (27 years old)

	Age group = 2 years				Age group $=26-45$ years				...	Total AME
	No. of F	AME	No. of M	AME	No. of F	AME	No. of M	AME		
HH1	0	0	1	. 38	0	0	1			1.38
HH2										
\ldots										
HH N										

2. Time frame

- Ex. Survey tracked expenditure for 2 weeks
- Divide amount spent per food item by a conversion factor (e.g., 14) to obtain expenditure per household per day

	Food A		Food B		Food N
	\$ spent in 14 days	\$/HH/day	\$ spent in 14 days	$\$ / \mathrm{HH} /$ day	\ldots
Household 1	140	10			
Household 2	280	20			
\ldots					
Household N					

3. From expenditure to consumption

For each household and food item, convert \$ to grams

Build a price per food reference table

- For every food item in the Household Budget Survey, based on country specific database for food price
- Food items are quantified according to their characteristics (e.g., bread=g; milk=ml; eggs=number of eggs)
- Ex. Afghanistan (AFN)
- Humanitarian Data Exchange's Global Food Prices Database
- FAO's Food Price Monitoring \& Analysis tool
- Local data
- ...

Food item	Units	Database provides price per X units	Price (AFN)	AFN/unit
Rice, white	g	100	9.20	$9.20 / 100=0.092$
Apples	g	300	20.17	$20.17 / 300=0.067$
\ldots				

Calculate quantity purchased per household

- From expenditure (Household Budget Survey = \$) to grams

Up to this point we have:

4. Integrating the AME

- To obtain g/AME/day for each food item and each household
- Using previously calculated, per household:
- Total number of AMEs
- g/HH/day for each food item


```
- Number of foods
```

 that need
 conversion
 - Availability of
conversion
factors
- Country-specific
adjustments

5. Consumption adjustments

When amount food consumed \neq amount purchased (e.g., because of cooking, peeling)

Determine amount consumed

- Ex. Rice*
- Factor 0.998 due to potential presence of dirt, AND
- Factor 3.0 due to increase of weight during cooking
- Food B, consumed as purchased (no factors) = no change in g/AME/day

	Rice, white				Food B (no factors)		...
	g/AME/day	Edible	Yield	Adjusted g/AME/day	g/AME/day	g/AME/day	
HH1	10	0.998	3	$10 \times 0.998 \times 3=29.94$	5.2	5.2	
HH2							
...							

6. Energy

- Exclude extreme values (under/over consumption)
- Determine the energy (kcal) per g (or ml, or other unit) of food
- Sources: country- or region-specific food composition tables

1	$\begin{aligned} & \text { CEREAL \& CEREAL } \\ & \text { PRODUCTS } \end{aligned}$	الحبوبو منتجاتها							
1.1	Barley	شُعر	12.5	11.5	1.3	1.2	3.9	69.6	336
1.2	Brown rice raw	رزبنيّ نيّ	13.9	6.7	2.8	-	1.9	74.7	377
1.3	- boiled	رزبني مسلوق	66.0	2.6	1.1	-	0.8	29.5	148
1.4	Burghol, dark	برغل غلمغ	8.4	14.2	0.5	1.7	10.1	65.6	318
1.5	Burghol, light	برغل فلدّ	8.5	12.1	0.8	1.3	6.6	70.7	331
1.6	Burr	خبز خّن (البر)	31.9	9.1	0.4	1.0	4.8	52.9	252
1.7	Cheese cake, frozen	كعكه الجبن مجدهن	44.0	5.7	10.6	-	N	39.0	268
1.8	Chocolate biscuits, full coated	بسكريت مغطى كالةّبلثوكولآلة	2.2	5.7	27.6	-	2.1	62.4	541
1.9	Corn	كرة	14.9	11.1	3.6	1.5	2.7	66.2	342
1.10	Corn, starch	نشانـرة	12.1	0.2	0.8	0.1	0.1	86.8	355
1.11	Cornflakes	كرون فليكن (رفانّ)	3.0	8.6	1.6	3.1	11.0	72.7	389
1.12	Cream crackers	كسار ات الكربيه	4.3	9.5	16.3	-	2.2	67.7	336
1.13	Custard, canned	كستر معلب	77.2	2.6	3.0	-	Tr	17.2	99
1.14	Dansih pastries	فطانّر دنهاركية	21.6	5.8	17.6	-	1.6	53.4	386
1.15	Date biscuit	بسكويت بالتّر	6.5	6.7	21.4	1.0	3.3	61.2	469
1.16	Digestive biscuits, chocolate	بسكوبي هضمي بالشوكولاهة	2.5	6.8	24.1	-	2.2	64.1	310
1.17	Doughnut, plain	دونت، خال	23.7	4.7	18.6	1.6	-	51.4	391

- Attention to units!

Build an energy per food reference table

- For every food item in the Household Budget Survey, based on the selected food composition table
- Convert to kcal/g (or applicable unit)
- Ex. Bahrain

Food item	Units	Source table provides energy pe(X units c)f edible portion	Energy (kcal)	$\mathrm{kcal} / \mathrm{unit}$
Barley	g	100	336	$336 / 100=3.36$
Brown rice, boiled	g	100	148	$148 / 100=1.48$
\ldots				

Calculate energy intalke per household

- Add energy intake from each food source
- Filter extremes (e.g., <1200 kcal/day; > $5100 \mathrm{kcal} /$ day*)

	Food A = Barley			Food B			...	Total kcal/AME/day
	Adjusted g/AME/day	kcal/g	kcal/AME/day	Adjusted g/AME/day	kcal/g	kcal/AME/day		
HH1	2	3.36	$2 \times 3.36=6.72$	0.5	6	$0.5 \times 6=3$		$6.72+3+\ldots=$
HH2								
...								

7. Final product $=$ Amount of food consumed

- Amount consumed/AME/day for each food item*:

	Food A (g/AME/day)	Food B (ml/AME/day)	...
HH1	3.21	0.22	
HH2	0	6.21	
\ldots			

\checkmark For probabilistic exposure assessment: consumption distribution
\checkmark For Total Diet Studies: identify foods to be analyzed

Thank you

silvia.dominguez.1@ulaval.ca silvia.dominguez@gforss.org

