

Food Contact Material's testing Regulatory Perspective

Khalid Ghaffar (BDM – Waters Corporation USA)

What are extractables and leachable?

Extractables:

Organic and inorganic chemical species that can be released from the surfaces of components used in the manufacture and storage of products under laboratory conditions (accelerated or exaggerated temperatures, solvents or surface exposure).

Leachable:

Organic and inorganic chemical species that can be released from the surfaces of components used in the manufacture and storage of products under conditions of normal use.

مؤتمر عُمان الدولي السادس لسلامــــــة وجــودة الغــــذاء Oman 6th International Conference on Food Safety and Quality 14-12 - 12 - 12 - 12

Where does E&L Testing Take Place?

EU Legislation

Regulation 1935/2004/EC Regulation Framework

Regulation 2023/2006/EC: Good Manufacturing Process

Active and intelligent: 450/2009/EC

Ceramics: 2005/31/EC (currently under review)

Plastics (including rubbers and elastomers): 10/2011/EU

Regenerated cellulose: 2007/42/EC

Unregulated materials

Adhesives Cork Glass Silicones Textiles Waxes Paper and board Varnishes and coatings Ion- exchange resins Metals and alloys Wood Printing inks

Food simulants for plastics

- Regulation 10/2011/EU Annex III
- Simplifies analyses
 - Reduces clean up
 - Reduces matrix variances and effects on mass spectrometer instruments

Simulant Named	Content	Mimics food type
А	Ethanol 10 %	Aqueous
В	3 % acetic acid	Acidic (tomato)
С	Ethanol 20 %	Diary (milk)
D1	Ethanol 50 %	Fatty
D2	Vegetable oil	Fatty
E	Tenax (poly(2,6-diphenyl-p-phenylene oxide))	Dry (cereals)

Overall Migration

Migrants- compounds which partition from the packaging into the food

Gravimetric approach

- Material or article is weighed, exposed to appropriate testing conditions and re-weighed following the migration testing
- Any loss in weight is considered to have migrated
- Tested under the worst case scenario conditions
- Qualitative analysis
 - weight loss calculation only
- Quantitative analysis
 - <u>extract analysed, typically by MS for targeted/ non- targeted analysis</u>
- Overall Migration Limit (OML): 10 mg.dm⁻²
 - 10 mg of substance per dm² of the food contact surface for all substances that can migrate from food contact materials to foods

Specific Migration

- Specific Migration Limits for plastic materials and articles as set out in Annex I of Regulation 10/2011/EU
- Specific migration is the amount of a specified component that migrates from the food contact material or article to the food during contact
- Regulations and testing ensures safety limit based on toxicological data and risk of exposure

Non-intentionally added substances (NIAS)- impurities from starting materials, reaction and degradation products formed during manufacturing process

- NIAS specifically outlined in 10/2011/EU for plastic materials
- Compounds not specifically regulated by name (in Annex I of Regulation) must be subjected to a risk
 assessment by the business operator, *i.e.*: manufacturer
- These include impurities, degradation products and reaction intermediates
- Non targeted analysis workflow required for detection of possible contaminants (unknowns)

What are the consequences of packaging failures?

Consumers reported strange taste and odour in various cereals.

- Test attributed these symptoms on elevated levels of 2-methylnaphthalene in the packaging used.
- Kellogg Company recalled 28 million boxes of cereal.

Printing Inks

- Printing inks are complex mixtures containing pigments or dyes, binders, solvents, and additives including plasticizers.
- Printing inks are commonly used as a promotional tool and to inform the consumer of the contained product.
- Ultraviolet light (UV)-curing inks are used to print and coat food contact and pharmaceutical packaging. These formulations typically consist of monomers and pre-polymers such as acrylates, pigments, photoinitiators, and additives.
- The non-printed side of the packaging or a foil is usually in contact with the product however due to the potential for migration they are considered a potential leachable or food contact material.

مؤتمر عُمان الدولي السادس لسلامــــــة وجــودة الغـــــذا Oman 6th International Conference on Food Safety and Quality 14-12

NIAS

Non-intentionally added substances (NIAS) are chemical compounds that are present in a material but have not been added for a technical reason during the production process. Their presence in food/pharma contact materials is generally not known by the consumer and often is a challenge for the producer.

NIAS originate from break-down products of food/pharma contact materials, impurities of starting materials, unwanted side-products, and various contaminants from recycling processes.

Extractables and Leachables of Inhalation Products ويوة الأ

E-cigarette Device

E-Liquids

E-liquids typically contain nicotine and excipients such as propylene glycol, glycerol and a mixture of flavors

Characterization of extractables and leachable is important for ensuring the safety, quality and efficacy of inhalation tobacco products

Evolving E-cigarette Regulations - Considerations

Challenges

- Tobacco Product or Medical Device?
- Lack of harmonized regional approaches to regulation
- Lack of scientific information
- Product quality & safety standards being implemented
 - E.g. UK Medicines and Healthcare Products Regulatory Agency (MHRA) requires complete quality information for licensing e-cigarettes including:
 - Composition of e-cigarette device, e-liquid and aerosol
 - Quality of nicotine and excipients
 - Extractables and leachable
 - Stability data during use and over product shelf-life

Food Contact Material's testing Technology Portfolio overview

Customer challenges to address

- Regulatory requirements
- 2 Sample extraction and preparation
- 3 Sample analysis: separation, detection, identification, quantitation
- 4 Data mining: visualisation, processing, reporting
- 5 Converting data to decisions and building the knowledge base

Sample Preparation

Challenges in Separations

Sample complexity

- Extracts of polymeric materials often contain many components
- Compounds on interest often at low levels
- Method blanks often contain many components

Chemical diversity

Compounds of interest cover very wide range of "chemical space"

Type of extracts

Can be in aqueous solution or strong organic solvents

"There is always a benefit from having the best possible chromatographic performance"

Chromatography considerations for extractable testing

Chromatographic separations

4 min separation by UPC² vs. 9.5 min by UPLC

0.60 UPLC 0.55 5-CI-2-OH-4 0.50 Diphenyl phthalate 0.45 OH-2-octyloxy BF 0.40 owinox 44B25 Tinuvin 328 0.35 Naugard 445 0.30 ganox 245 0.25 Uvitex OB Irgafos 168 ⊃ nox 1010 ¥0.20 BHT ganox 1076 0.15 0.10 Irga 0.05 0.00 $\Delta \Delta$ -0.05 A AAZ -0.10 -0.15 3.50 4.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00 4.50 Min.5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 10.00

Detection & Identification

4 Fundamental Questions

Are these compounds in my sample?

Screening

How much is in my sample?

Quantitation

What else is in my sample?

Elucidation

What is the difference between my sample and another one?

Comparison

All can be important in E&L testing

Screening & Quantitation

Are these compounds in my sample?

Screening

How much is in my sample?

Quantitation

Screening against a compound list, database or spectral library

- Acquisition may be targeted
 - Only look for pre-selected compounds
 - Quantify against standards

مؤتمر عمان الدولايي السادس مورة الغرائي السلام ته وجودة الغرائي السلام ته وجودة الغرائي السلام ته وجودة الغرائي السلام ته وجودة الغرائي المسلوم ته وجودة الغرائي (ما مولام المولايي (ما مولاي) (ما مولايي المولايي) (ما مولايي المولايي الموليي المولي الموليي (ما مولايي الموليي الموليي الموليي (ما مولي الموليي الموليي الموليي (ما موليي الموليي الموليي الموليي (ما موليي الموليي الموليي الموليي (ما موليي الموليي المولي الموليي (ما مولي الموليي الموليي الموليي (ما موليي الموليي الموليي المولي (ما موليي الموليي الموليي المولي (ما مولي الموليي الموليي المولي المولي (ما موليي الموليي المولي المولي المولي (ما موليي المولي المولي المولي المولي (ما مولي الموليي المولي الموليي المولي (مولي المولي الموليي المولي المولي (ما موليي

- Highest performance methods
 - Use MS/MS to provide selectivity & sensitivity in complex samples
 - Use retention time, multiple MRMs and ion ratios to confirm identity

ACQUITY I-Class with Xevo TQ-XS

- More advanced methods
 - Use mass detection
 - Eg. LC/PDA/Qda system
 - Include mass data to help detect and confirm identity

ACQUITY H-Class with QDa

• **Simple** routine methods

- Eg. LC/PDA system
- Use retention time and UV spectra to target compounds

Screening using a non-targeted acquisition

Are these compounds in my sample?

Screening

Screening against a compound list, database or spectral library

- Acquisition may be Untargeted
 - No pre-selection of compounds to look for
 - See widest range of compounds
 - Look for compounds of interest in historical datasets

Also answer another question

What else is in my sample?

Elucidation

MS Technology Positioning

Are these compounds in my sample?

Screening

How much is in my sample?

Quantitation

Tandem Quads – "Gold Standard" for targeted screening & quantitation.

What else is in my sample?

Elucidation

What is the difference between my sample and another one?

Comparison

Q-Tof as HR MS

Scientific Information System

- Single environment for data ...
 - Acquisition, processing, review, reporting and storage/management
- Database solution
 - Easier to find your data, and related data
- Workflow centric solution
 - Single software for screening, quantitation, elucidation, comparison, ion mobility data processing.
- Scientific Library
 - Provides single repository for all compound information
 - Spectra, RT, fragment ions, structures, Word Docs, PDFs etc.
- Standalone Workstation or Networked solution

Targeted and non - targeted screening in UNIFI

UPLC, UPC² or APGC with Xevo G2-XS Qtof or VION: High resolution chromatographic separation High sensitivity and accurate mass, MS^E data

Candidate *m/z* determination Statistical analysis

> Elemental composition ChemSpider search

Fragment Match for confirmation of molecular fragments

MS/MS measurement: Acquire standards and compare standard results with samples

Targeted screening/Quantitation

User library

مؤتمر عُمان الدولامي السادس لسلامــــة وجــودة الغــــذاء Oman 6th International Conference on Food Safety and Quality 14-12

Target and Suspect Compounds

Name	CAS No.	Synonym			
1,1,1-Trimethylolpropane, ethoxylated, ester with 2-ben-zoyl-benzoic acid	Not available	Polymeric benzophenone derivative			
1-(4-[(4-Benzoylphenyl)thio]phenyl)-2-methyl-2-[(4-methylphenyl)sulfonyl]- 1-propan-1-one	0272460-97-6	Esacure 1001			
1-Butanone, 2-(dimethylamino)-1-[4-(4-morpholi- nyl)phenyl]-2-(phenylmethyl)	0119 <mark>3</mark> 13-12-1	Irgacure [®] 369			
Poly(oxy-1,2-ethanediyl), α-(2-benzoylbenzoyl)-ω-[(2-ben- zoylbenzoyl)oxy)]	1246194-73-9	Omnipol 2702			
1,3-di({a-[1-chloro-9-oxo-9H-thioxanthen-4-yl)oxy]acetylpoly[oxy(1-methylethylene)]}oxy)-2,2-bis({a-[1- methylethylene)]}oxymethyl) propane	1003567-83-6	Speedcure 7010			
(Dimethylamino)benzoate, esters with branched polyols	Not available	Polymeric aminobenzoate derivative			
1-Butanone, 2-(dimethylamino)-2-[(4-methylphenyl)methyl]- 1-[4-(4-morpholinyl)phenyl]-	0119344-86-4	Irgacure [®] 379			
Phenyl bis(2,4,6-trimethylbenzoyl) phosphine oxide	0162881-26-7	Irgacure [®] 819			
Pentaerythritol ethoxylate tetraacrylate	51728-26-8	PPTTA			
Glycerol propoxylated, esters with acrylic acid	5240 <mark>8-8</mark> 4-1	GPTA			
Trimethylolpropane triacrylate	15625-89-5	ТМРТА			
Ethoxylated trimethylolpropane triacrylate	28961-43-5	TMP(EO)TA			

Summary of Target Ions and Calibration Ranges

Synonym	First Most Intense Target	Adduct	Observed <i>m/z</i> of Expected Fragments	Primary Calibration Range (ng/mL)	
Polymeric benzophenone derivative (n=6)	832.3917	[M+NH ₄] ⁺	209.0594, 253.0869	10-10,000	
Esacure 1001	515.1339	[M+H]+	331.1143	5-1000	
Irgacure 369	367.2381	[M+H] ⁺	190.0871, 176.1442, 294.185 <mark>5</mark>	5-1000	
Omnipol 2702 (n=4)	628.2543	[M+NH ₄] ⁺	209.0594, 253.0869	5-1000	
Speedcure 7010 (n=8)	905.1697	[M+2H] ²⁺	361.0290, 320.9980, 379.0394	50-10,000	
Polymeric aminobenzoate derivative (n=6)	840.4656	[M+H]⁺	148.0773, 19 <mark>2.</mark> 1029	5-5000	
Irgacure 379	381.2532	[M+H] ⁺	190.0869	5-1000	
Irgacure 819	441.1594	[M+Na]⁺	147.0812	50-5000	
PPT(T)A (n=5)	590.2823	[M+NH ₄] ⁺	501.2334, 413.1802, 369.1526	5-5000	
GPTA (n=4)	504.2819	[M+NH₄]⁺	241.1070, 113.0582, 183.0636	5-5000	
ТМРТА	319.1151	[M+Na] ⁺	[M+Na]+	50-1000	
TMP(EO)TA (n=5)	490.2654	[M+NH₄] ⁺	269.1370, 313.1633, 357.1890	5-5000	

- Three different ink formulations (printed on a foil) were tested in the migration study.
- Increased migration was noted for TMPTA.
- The detected levels exceeded the 50 µg/kg SML level in formulation 1 and 3.

At the end ink formulation 2 was taken for further evaluation.

Migration Results	Ink Form	ulation 1	Ink Form	ulation 2	Ink Formulation 3			
	μg/dm ² μg/kg		µg/dm²	μg/kg	µg/dm²	µg/kg		
Irgacure 379	ND	ND ND		ND	ND	ND		
Esacure 1001	0.1	0.7	0.4	2.5	0.2	1.2		
ТМРТА	60	360	2.6	15	37	220		
тмреота	ND	ND	1.3	8.1	ND	ND		
рртта	ND	ND	0.7	4.2	0.7	4.1		
GPTA	0.8	4.8	0.8	4.5	1.4	8.3		

ND = not detected

مؤتمر عُمان الدولي السادس لسلامـــة وجـودة الغــــذاء Oman 6ⁿ International Conference on Food Safety and Quality Laging 2023 م. مسقط

5

6

7

1946 C12H10N3

1508 C7H7O

1508

Scientific Library

4.17 ESI+

4.05 ESI+

4.05 ESI+

Tinuvin P [CCS test]									🦛 To
roperty	Value								
tem type	Compound								
em description	2440-22-4								
JPAC name								1	
ormula	C13H11N3O								
ill formula	C13H11N3O							/	
verage molar mass	225.2459								
Ionoisotopic mass	225.0902						[
em tag	Polymer Additive, Antioxidant, ERA			ŕ		N			
InChI 15/C13H11N3O/ c1-9-6-7-13(17)12(8-9) 16-14-10-4-2-3-5-11(10) 15-16/h2-8,17H,1H3									
etection results -					3				
dd Edit Delete									
Priority 1 Inter	asity ₂⊽ Formula	Neutral Mass (Da)	Adduct ₃ △ Charge	Fragmentation type	Expected m/z	Observed m/z	Expected RT (min)	Observed CCS (Å ²)	Observed drift (ms) Ioniza
Detection result: In	strument model: ACQUITY San	nple Manager FTN, Osprey, A	CQUITY Binary Solvent Manag	er, ACQUITY Column Manage	r, , Instrument serial no	: , Analysis, Created by	administrator on May 18, 2	2016 (7 items)	
1	487338	225.0902	+H 1	None	226.0975	226.0968	3.600	148.12	4.28 ESI+
2	9376 C6H5		1	CID	77.0386	77.0382	3.600		4.26 ESI+
3	5087		1	CID	120.0556	120.0552	3.600		4.23 ESI+

196.0869

107.0491

107.0491

196.0872

107.0490

107.0490

3.600

3.600

3.600

CID

CID

CID

1

1

1

Review

Tray: 1:A,2

🝸 Filters 🔻

											🔋 🐮 #	🔊 💷	
	Workflow 🖵 🗸	Identification status	Neutral mass (Da)	Observed m/z M					Detector counts	Response	Adducts		1
c		Identified	474.40730	473.3996	 KI ,	mass	accuracy	'	815535	516128	-H		
Su	mmary	Identified	774.59510	773.5883	0.5	0.0	4.20	4.39	1261891	564724	-H, +HCOO		
0	Batch Overview	Identified	1176.78408	1175.7772	0.4	0.3	4.01	4.13	2540995	931926	-H		
۸.	curate Mass Screening bs	Identified	530.46990	529.4634	0.8	1.5	5.21	5.50	358988	244974	-H		
~	curate mass screening bc	Identified	636.48661	635.4784	-0.9	-1.4	2.98	3.01	1281611	580027	-H		
•	System suitability sample	Identified	586.35057	585.3427	-0.6	-1.0	2.72	2.74	1033970	612482	-H, +HCOO		
0	Targeted Screening Overview	Identified	152.04734	151.0396	-0.4	-2.9	0.72	0.64	55086	50003	-H		
_		Identified	180.07864	179.0706	-0.8	-4.4	1.22	1.12	156010	139232	-H, +HCOO		
0	Targeted Screening Details	Identified	357.16079	356.1531	-0.5	-1.3	4.09	4.18	152205	84380	-H		
0	Binary compare details	Identified	658.39952	657.3930	0.8	1.1	6.60	7.14	564639	351409	-H		-
~	Binary compare		E: 🔩 🕉 🛙	i 🗟 🔹 💠 🕒	Spectra -						🖪 🖩 🎘 🗸		

Observed mass [m/z]

Summary

Food Contact Material's Testing Application review

[APPLICATION NOTE]

Waters

Identification of Non-Intentionally Added Substances (NIAS) in Food Contact Materials Using APGC-Xevo G2-XS QTof and UNIFI Software

Nicola Dreolin and Peter Hancock Waters Corporation, Wilmslow, UK

APPLICATION BENEFITS

- Reliable GC-MS method for screening and structural elucidation of nonintentionally added substances (NIAS) in food packaging materials
- Atmospheric Pressure Gas
 Chromatography (APGC) is a soft ionization technique that produces lower levels of fragmentation than EI, enabling improved detection of challenging molecular ions and the avoidance of

INTRODUCTION

Food comes into contact with many materials and articles during its production, processing, storage, preparation, and serving before its eventual consumption. Such materials and articles are called food contact materials (FCMs). Recently, concern about the wholesomeness and safety of food products has increased dramatically. Most of the concern usually focuses on food additives, monomers, oligomers, and non-intentionally added substances (NIAS). A non-intentionally added substance is defined in the European Union (EU) Regulation No 10/2011 as "an impurity in the substances used or a reaction intermediate formed during the production process or a decomposition or reaction product."¹² FCMs can, therefore, be

GC-Qtof for FCM, and compared to EI

https://connect.waters.com/files/app/file/cb774f22-eef2-499e-93fe-4a9d94e8e72d

Chemical Analysis of Food Packaging Migrants and Other Chemical Contaminants in Infant Formula Using a TOF-Based Approach

Melvin Gay,¹ Antonietta Gledhill² ¹Waters Pacific Pte Ltd, Singapore, ²Waters Corporation, Manchester, UK

APPLICATION BENEFITS

- Unequivocal identification of potentially harmful food packaging migrants in infant formula containers.
- Simultaneous MS^E data acquisitions of both low energy precursor (MS) and high energy fragment ions (MS^E) in a single injection, for compound identification and confirmation.
- Structural elucidation and compound identification through the use of MarkerLynx[™] MS, ChemSpider, and other software tools.

GOAL

To identify possible food packaging migrants in infant formula containers.

INTRODUCTION

Packaging has become an indispensible element of food manufacturing processes. Packaging not only better protects consumers from microorganisms, biological, and chemical changes in food, thus providing longer shelf life, but it also makes foods easier to transport.

Recently, food packaging issues have gained widespread importance in food safety, due to the possible migration of chemicals from food contact materials into the food. Instances, such as the leaching of bisphenol-A (BPA) and BPA diglucidul ether (BADGE) from plastic films to aqueous food simulants ^{1,2} have

http://www.waters.com/webassets/cms/library/docs/720003905en.pdf

Quantifying Primary Aromatic Amines in Polyamide Kitchenware Using the ACQUITY UPLC I-Class System and Xevo TQ-S micro

Steven Haenen and Marijn Van Hulle Waters Corporation, Brussels, Belgium

APPLICATION BENEFITS

- Single method for analysis of 23 PAAs
- No need for ion-pairing reagents, or the removal of acetic acid from the sample extract prior to analysis
- Sensitive detection at levels well below the EU guidelines with Xevo® TQ-S micro Triple Quadrupole Mass Spectrometry

INTRODUCTION

Primary Aromatic Amines (PAAs) are a class of compounds of which the simplest form is aniline (Figure 1). PAAs are substances that are used, for example, in the production of certain colorants, so-called azo pigments, notably in the color range yellow – orange – red. Whereas a large number of PAAs are safe for human health, some PAAs are known human carcinogens. For kitchenware, paper napkins, baker's bags with colorful print and other printed items that come in contact with food, some PAAs may pose a health risk, if they are transferred to the food.

http://www.waters.com/webassets/cms/libra ry/docs/720005781en.pdf

- Kitchenware by TQ-S micro and i-class
- Primary aromatic amines

The Identification and Structural Elucidation of Potential Migrants from Paper and Board Food Packaging Using UPLC/Q-Tof MS with MS^E and MassFragment

Malcolm Driffield,¹ Antony Lloyd,¹ Emma Bradley,¹ Dominic Roberts² ¹The Food and Environment Research Agency, York, UK ²Waters Corporation, Manchester, UK

APPLICATION BENEFITS

- MS^E data acquisition allows for the simultaneous collection of both low energy precursor ion and higher energy fragment ion data from a single injection for greater confidence in compound identification, and provides comprehensive historical data review.
- ChromaLynx[™] XS Software provides rapid detection, identification, and confirmation of all components in complex mixtures. It allows the user to determine chemical formulae from accurate mass information, searching a user-prepared database of compounds.
- MassFragment[™] is an intelligent software tool that automates structural assignment to fragment ion spectra making data processing significantly easier, and confirmation without standards possible.

INTRODUCTION

Recycling paper and board has clear benefits to the environment, relieving pressures on forestry resources and reducing the amount of waste disposal. Currently, there is limited control over the types of paper and board entering the recycling stream. End use of the recycled paper and board ranges from less demanding applications, such as newspapers and magazines, to cardboard boxes and cartons, and more demanding applications, such as food packaging.

In recent years, there have been issues reported in scientific literature and in the media relating to the use of recycled paper and board in food packaging. Contaminants associated with recycled paper and board have been detected in food. Mineral hydrocarbons have been found from inks used to print newspapers and magazines,¹⁻² as well as phthalates, such as diisobutyl phthalate from adhesives in catalogues and brochures,³ and photoinitiators and other components from printing on the external surface of the paper and board.⁴ All of these chemical types have been shown to persist after passing through the recycling process.

This study is part of a larger project investigating suitable sources of paper and board for use in recycled food packaging.⁵ Four different paper sources (plain white printer paper, newspapers and magazines, corrugated cardboard,

http://www.waters.com/webassets/cms/library/docs/720004591en.pdf

A Simple, Fast, and Reliable LC-MS/MS Method for Determination and Quantification of Phthalates in Distilled Beverages

Dimple Shah and Jennifer Burgess Waters Corporation, Milford, MA, USA

APPLICATION BENEFITS

- Separation and detection of 7 phthalates in 11 minutes.
- Simple, quick "dilute and shoot" sample preparation method for routine applications where high sample throughput is required.
- Elimination of major phthalate contamination using the ACQUITY UPLC[®] Isolator Column.
- Selective mass spectra obtained for all seven phthalates with dominant precursor ion.
- Low limits of quantification achieved using Waters[®] ACQUITY UPLC H-Class System and Xevo[®] TQD.

INTRODUCTION

Phthalates, esters of phthalic acid, are often used as plasticizers for polymers such as polyvinylchloride. They are widely applicable in various products including personal care goods, cosmetics, paints, printing inks, detergents, coatings, and food packaging. These phthalates have been found to leach readily into the environment and food as they are not chemically bound to plastics. As such they are known to be ubiquitously present in our environment.

Phthalates have been reported to show a variety of toxic effects related to reproduction in animal studies, which has resulted in these compounds being considered as endocrine disruptors. Screening food and beverages for phthalates contamination is required by many legislative bodies, although regulations vary from country to country in regards to acceptable daily tolerances and specific migration limits.

http://www.waters.com/webassets/cms/libr ary/docs/720005403en.pdf

• H-class and TQD for phthalates

Questions?

Khalid_ghaffar@waters.com

مؤتمر عُمان الدولي السادس لسلامــــة وجــودة الغـــــذاء Oman 6th International Conference on Food Safety and Quality

