GLOBAL FOOD REGULATORY SCIENCE SOCIETY

Risk Assessment: Aflatoxins in Food

Day 3 – 28 February, 2023

9:00 - 9:45

Dr. Silvia Dominguez | Global Food Regulatory Science Society (GFoRSS)

Risk assessment questions

Does the level of aflatoxin X in food Y pose a health risk to Egyptian consumers?

Does the existing ML (?) for aflatoxin X in food Y provide adequate protection to Egyptian consumers?

Are there any Egyptian population groups that may be more at risk than others to aflatoxin exposure?

Consumption patterns, coexisting conditions ...

Risk assessment questions (cont.)

□Are there any specific foods driving the exposure of the Egyptian population to aflatoxin X or to aflatoxins in general?

□Which aflatoxin poses the highest risk to the Egyptian population?

□ Is the Egyptian population's overall exposure to aflatoxins within "safe" limits?

□Would the establishment of ML or other standards for specific aflatoxin-food combinations enhance protection of Egyptian population?

Group exercise

- 1. Formulate a risk assessment question and outline what type of results we would need to answer it
 - 2. Formulate a risk assessment question related to the AFM1 / dairy milk occurrence data we extracted

Development of a formal risk assessment

✓ Risk assessment question

- 1. Hazard identification: description of the food safety issue
- 2. Hazard characterization: description of the hazard andits adverse health effects
- Exposure assessment: level of hazard the population is exposed to

4. Risk characterization: is this exposure "safe"?

1. Hazard identification

Why is this hazard a food safety concern for this population?

Epidemiological data

□ Reports of occurrence of hazard at levels above MTL (?)

□ Reports of export rejects (e.g., RASFF)

Country-specific factors that may increase risk:

- High consumption (e.g., ractopamine / beef liver / Egypt)
- Food processing / handling / storage practices (e.g., grains storage)
- Population-specific (e.g., dietary habits, prevalence of hepatitis B/C virus)
- Weather (?)

	\bigwedge	
	4	
\square		<u>\</u>

2. Hazard characterization

What exactly is the hazard and how toxic is it?

- □Hazard description (sources, chemical structure, under which conditions it is produced, in which form it is expected to reach the consumer ...)
- □What are the possible adverse health effects
- □Which doses can produce these adverse health effects
- Domestic legislation / international standards (e.g., MTL for AFB1 in Egypt 2 μg/kg)

3. Exposure assessment

Level of hazard the population is exposed to (ng/kg bw per day):

□Standard body weight (60 kg), adapted (70 kg Egypt), per age group...

□Sum if considering exposure from different food sources

Output form: distribution or point values, depending on inputs

4. Risk characterization

Exposure to contaminant from dietary source(s) is <u>compared to</u> reference "safe" value to assess risk

Is the estimated exposure "safe"?

□ Margin of exposure (MOE)

□Hazard index (HI) or hazard quotient (HQ)

□Carcinogenic potency

Margin of exposure

Substances both genotoxic and carcinogenic = no tolerable daily intake

Compare exposure to an **animal study's** reference point (RFD)

$$MOE = \frac{RFD}{EDI}$$

- Benchmark dose (BMD): causes low but measurable response
- BMD lower confidence limit 10% (BMDL10): lowest dose that is 95% certain to cause ≤10% cancer incidence
- Ex. AFB1: 400 ng/kg bw per day (JECFA, 2001)

 \Box MOE \geq 10 000 little concern (EFSA, 2005)

Hazard index

Compare exposure to an animal study's reference point (RFD)

$$HI = \frac{EDI}{RFD}$$

□Aflatoxins (no tolerable daily intake)

- TD50 (daily dose that induces tumours in ½ of laboratory animals) / 50 000 (uncertainty factor)
- Ex. AFM1 0.2 ng/kg bw per day (Sharafi et al., 2022)

□HI > 1 risk (EFSA, 2020)

Carcinogenic potency in humans

- General FAO/WHO (2018), EFSA (2020)
- □Aflatoxins = hepatocellular carcinoma (HCC)
- □Higher potency if HBV+ (ex. AFB1: 0.01 -; 0.3 +)
- □Cancer potency (expressed as HCC cases per year per 10⁵ individuals per ng/kg bw per day):

$$P \ cancer = (PHBV \ x \ \%HBV \) + (PHBV \ x \ \%HBV \)$$

□Risk of HCC incidence (expressed as HCC cases per year per 10⁵ individuals):

HCC risk = *P cancer x EDI*

Uncertainty

There is no perfect model

□Sources: data gaps,

assumptions, models...

How do they affect risk assessment outputs?

Over / under estimation

Sources of uncertainty	Direction ^(a)
Extrapolation of the occurrence data to the whole of Europe for certain food categories	+/
Potential reduction of the aflatoxin concentration due to processing not considered for some samples	+
Use of analytical data from targeted sampling	+
Large proportion of left-censored data in the data set	+/
Assumptions from the summing of the individual aflatoxins at the level of sample	+/
Uncertainty in the exposure assessment in the study by Yeh et al. (1989)	+/
Estimated cancer potency for hepatitis B surface antigen negative subjects is more uncertain because based on relatively few cases	+/
Use of upper bound cancer potencies	+
Assumption on the co-infection of HBV and HCV in Europe	+
The HBV and HCV status cannot be taken into account when using animal data for the risk characterisation	+/
Cancer potency and reference point for aflatoxin B1 applied to 'aflatoxin total'	+

EFSA (2020)

Monte Carlo: Inputs

 Random sampling from distributions
 Ex. loop using triangular distributions for concentration and consumption, and MOE to characterize risk

- Ex. nunc=10, nvar=100 (usually a lot more)
 - 10 simulations
 - 100 dietary exposures per simulation

```
for (u in 1:nunc)
{
    conc <-rtri(nvar,min,max,mode)
    conso<-rtri(nvar, min_conso, max_conso, mode_conso)
    expo<-(conso*conc)/bw
    mean_expo[u]<-mean(expo)
    MOE<-RFD/expo
    mean_MOE[u]<-mean(MOE)
    risk<-MOE>10000
    riskpernvar[u]<-sum(rbernoulli(nvar,risk))
</pre>
```

- ✓ Number of simulations
- ✓ Number of exposures per simulation
- ✓ Body weight
- Concentration distribution parameters
- ✓ Consumption distribution parameters

✓RFD

Monte Carlo: Outputs (using made-up inputs)

Exposure: distribution, mean[95% CI]

MOE: distribution, mean[95% CI]

Risk: For each of the 10 simulations, how many of the 100 simulated exposures had MOE > 10 000

Mean risk

Outputs examples based on made-up inputs:

> summary(expo)

Min. 1st Qu. Median Mean 3rd Ou. Max. 0.001644 0.013036 0.024233 0.029873 0.042875 0.094534 > summary(mean_expo) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02775 0.02908 0.03004 0.03036 0.03115 0.03336 > summary(MOE) Min. 1st Qu. Median Mean 3rd Qu. Max. 2631 9265 14523 30404 27172 219710 > summary(mean_MOE) Mean 3rd Qu. Min. 1st Qu. Median Max. 25021 27219 29312 30039 33210 35303 > quantile(mean_MOE, c(0.025, 0.975)) 2.5% 97.5% 25411.18 35081.16 > riskpernvar [1] 70 67 75 80 72 67 65 73 67 74

Example: AFM1 and raw milk

AFM1 MTL Egypt = 0.05 ppb (ug/kg) = 50 ng/kg

- Raw milk, heat-treated milk and milk for the manufacture of milk-based products
- Based on EU regulation
- Risk assessment question: Does the MTL of 50 ng AFM1/kg milk protect Egyptians that consume raw milk?
- 1. Calculate exposure
 - Milk consumption in Egypt
 - Concentration of AFM1 in milk sold in Egypt
- 2. Characterize risk

Milk Consumption

- From FAO Food balance sheets: <u>https://www.fao.org/faostat/en/</u> <u>#data/FBS</u>
- □26.91 kg/capita/year
 - Not raw milk specificially
- Considering 365 days:
 - 0.074 kg per day
- Could do it for specific populations (children) if we have consumption data

REGIONS SPECIAL GROUPS	🍄 M49 🗸	ELEMENTS	
\bigcirc Filter results e.g. afghanistan		\bigcirc Filter results e.g. total population - both sexes	
ODominica			
O Dominican Republic		○ Food	
CEcuador		Sold supply quantity (kg/capita/yr)	
⊘ Egypt		Food supply (kcal/capita/day)	
) El Salvador		🔘 Food supply (kcal)	
◯ Estonia		O Protein supply quantity (g/capita/day)	
Select All Cle	ear All	Select All	Clear All
Egypt $ imes$		Food supply quantity (kg/capit	a/yr) ×
ITEMS AGGREGATED	CPC -	YEARS	
TTEMS AGGREGATED	CPC -	YEARS	
TEMS ITEMS AGGREGATED	CPC -	YEARS Q Filter results e.g. 2020 2020	
TTEMS ITEMS AGGREGATED	CPC -	YEARS Q Filter results e.g. 2020 ⊘ 2020 Q 2019	
TTEMS AGGREGATED	CPC -	YEARS	
TTEMS ITEMS AGGREGATED	CPC -	YEARS ○ Filter results e.g. 2020 ○ 2020 ○ 2019 ○ 2018 ○ 2017	
ITEMS ITEMS AGGREGATED	CPC -	YEARS ○ Filter results e.g. 2020 ○ 2020 ○ 2019 ○ 2018 ○ 2017 ○ 2016	
TTEMS AGGREGATED	CPC -	YEARS ○ Filter results e.g. 2020 ○ 2020 ○ 2019 ○ 2018 ○ 2017 ○ 2016 ○ 2015	
TTEMS ITEMS AGGREGATED	CPC -	YEARS ○ Filter results e.g. 2020 ○ 2020 ○ 2019 ○ 2018 ○ 2017 ○ 2016 ○ 2015	
TTEMS ITEMS AGGREGATED	ear All	YEARS Q Filter results e.g. 2020 ⊘ 2020 ○ 2019 ○ 2018 ○ 2017 ○ 2016 ○ 2015	Clear All

AFM1 Concentration

Pooled mean AFM1 concentration in raw milk in Egypt = 36.85 ng/kg

Could do it also for min and max concentration. Exactly the same procedure.

Exposure to AFM1 from raw milk in Egypt

Using concentration from published studies:

EDI = (36.85 ng/kg * 0.074 kg per person per day) / 70 kg bw

 $\frac{36.85*0.074}{70} = 0.039 \text{ ng/kg bw per day}$

Using MTL = 50 ng/kg as concentration
 EDI = (50 ng/kg * 0.074 kg per person per day) / 70 kg bw

•
$$\frac{50*0.074}{70}$$
 = 0.053 ng/kg bw per day

Characterize risk

- □Hazard index = EDI / RFD
 - RFD AFM1 = 0.2 ng/kg bw per day (Sharafi et al., 2022)
 - HI <1 = low concern</p>

$$\Box HI = \frac{0.039}{0.2} = 0.195$$
 using reported AFM1 concentration
$$\Box HI = \frac{0.053}{0.2} = 0.265$$
 using AFM1 MTL as concentration

Characterize risk

$\Box MOE = RFD / EDI$

- RFD AFM1 = 570 ng/kg bw per day (Sharafi et al., 2022)
- MEO> 10000 = low concern
- $\Box MOE = \frac{570}{0.039} = 14615$ using reported AFM1 concentration $\Box MOE = \frac{570}{0.053} = 10754$ using AFM1 MTL as concentration

Characterize risk

Carcinogenic risk

 $P \ cancer = (PHBV \ x \ \%HBV \) + (PHBV \ x \ \%HBV \)$

 $HCC \ risk = P \ cancer \ x \ EDI$

AFM1 PHBV- = 0.001

AFM1 PHBV+ = 0.03

□% HBV in Egypt??...

Conclusion

Risk assessment question: Does the MTL of 50 ng AFM1/kg milk protect Egyptians that consume raw milk?

- □Your answer based on risk assessment results:
- **D**Explain sources of uncertainty

