GLOBAL FOOD REGULATORY SCIENCE SOCIETY

Extraction and Management of

Occurrence Data

Day 2 – 27 February, 2023

9:00 - 9:45

Dr. Silvia Dominguez Global Food Regulatory Science Society (GFoRSS)

Chemical risk assessment

Exposure to contaminant from dietary source(s) is compared to reference "safe" value to assess risk

Estimated daily intake of contaminant =

Daily food intake x Concentration in food Body weight

□EDI (*ng/kg bw per day*)

Daily food intake (*kg/day*)

□Concentration in food $(ng/kg) \rightarrow$ measured or <u>extracted from database / literature</u> □Body weight (kg)

Study selection = "mini database"

Define selection criteria: contaminant, food, country, years....
 Not necessarily straightforward (we'll do an exercise)
 Extract ALL possible information from the selected studies
 Ex. adapted from Rahmani et al (2018)

The prevalence of aflatoxin <u>M1 in milk of Middle East</u> region: A systematic review, meta-analysis and probabilistic health risk assessment

Country	Year	Sample size	Positive	Prevalence (%)	Method of detection	Mean (ng/ kg)	SD ^a	SEb	Range	LOD (ng/ kg) ^c	LOQ (ng/ kg) ^d	Reference
						-02	252283	2002002	0.0.000	-07	-02	Alternation and the state of the
Iran	2013	320	320	100 (320/320)	ELISA®	121	14.98	0.84	40-242			(Sadeghi et al., 2013)
Iran	2002	64	53	83 (64/53)	ELISA	207	130.41	16.30	69-387			(Kamkar, 2002)
Iran	2005	90	90	100 (90/90)	ELISA	60.17	54.00	5.69	7.31-141.2	5		(Mokhtarian and Mohsenzadeh 2005)
Iran	2005	111	84	76 (111/84)	TLC	60	23.00	2.18	15-280	1		(Kamkar, 2005)
Iran	2013	60	44	73 (60/44)	ELISA	55	30.25	3.91	17-390	3		(Kamkar et al., 2014)
Iran	2006	624	624	100 (624/624)	RIDASCREEN	112	70.56	2.82	NM ⁸			(Alborzi et al., 2006)
Iran	2008	319	319	100 (319/319)	HPLCh	56.4	13.68	0.77	NM	5		(Tajkarimi et al., 2008b)
Iran	2012	100	100	100 (100/100)	HPLC	2.7	1.87	0.19	0.45-9.76			(Behfar et al., 2012)

Table 1

The main characteristic of included studies

Data preparation = Excel file

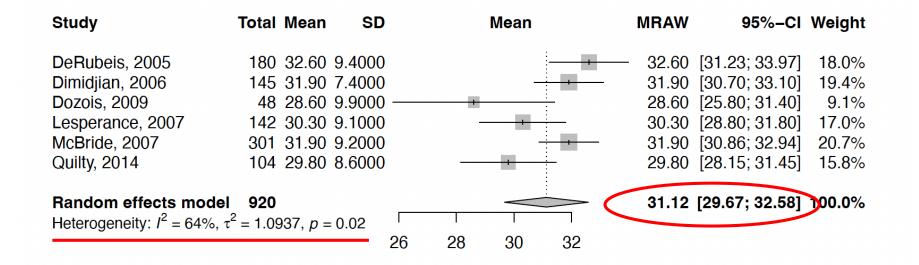
□From each study, for exposure assessment, we need:

- Number of samples tested
- Mean
- Standard deviation (or RSD)
- Range [min, max]
- LOD / LOQ values

- Number of samples <LOD / LOQ ("non detects")</p>
- Number of samples between LOD and LOQ (if applicable)

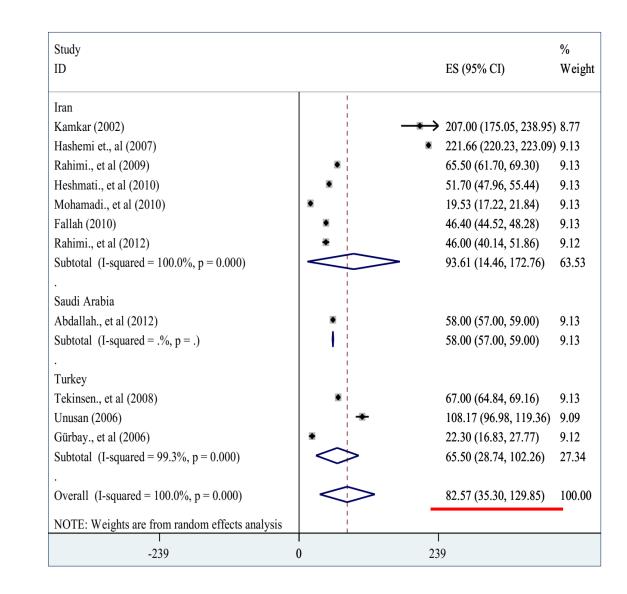
□ Will most likely result in additional data exclusions

Meta-analysis


Can we pool data from different studies together?

- Treat it as one single data set
- Check heterogeneity (most likely)
- **Use Random Effects Model to estimate pooled values**
 - "meta" package in R
 - Concentration
 - Prevalence

Meta-analysis outputs


Easy to produce for studies with n, mean and SD

- □Forest plot: forest.meta()
- □Full analysis: metamean() / metaprop()
- **D**Ex. using data from R database

Ex. Rahmani et al (2018)

Concentration of AFM1 in UHT milk in countries in the Middle East

Data pooling

Could do it for Egypt for several mycotoxin / food combinations

Gives us a point value (e.g., pooled mean, pooled prevalence)

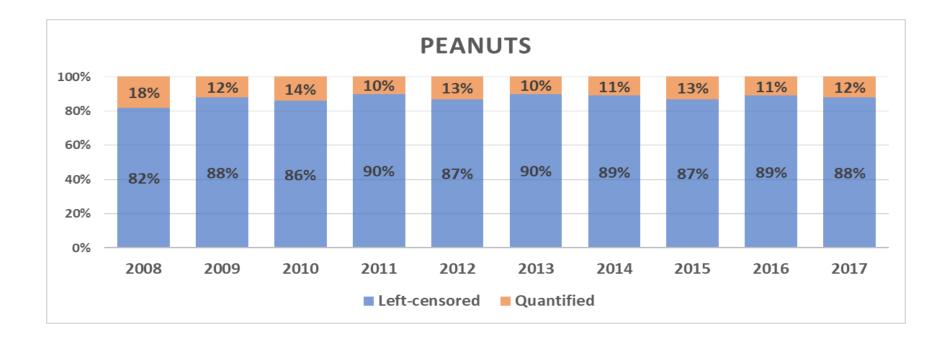
Useful for deterministic exposure assessment, but not sufficient for probabilistic

Probabilistic includes variability; inputs and outputs = distributions

Probabilistic exposure assessment

□Need **raw** data to generate a distribution

- ALL data points
- Unlikely to be published


 Would need to generate in the lab (targeted study) or have access to monitoring data

□Or, if we have [min, mean, max] we could do a triangular distribution

□But not sufficient for a full parametric model (e.g., LogNormal, Gamma, Weibull)

Left-censored data ("non detects")

□Usually, for contaminants, a lot of data **points <LOD/LOQ** □What to do with these values? Are they real 0s? □Ex. EFSA (2020) aflatoxins risk assessment

Left-censored data ("non detects")

First option: substitution

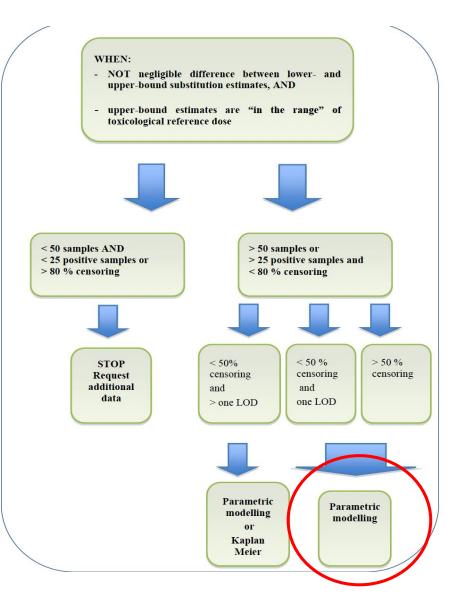
Recommended by WHO/IPCS (2009) for chemicals likely to be present

Used in EFSA (2020)

Proportion of results <lod< th=""><th>Simple estimate of mean</th><th>Estimation of statistical mean, median, standard deviation</th></lod<>	Simple estimate of mean	Estimation of statistical mean, median, standard deviation
None, all quantified	true mean	
≤ 60% non-quantified	using LOD/2 for all results less than LOD ^a	Use methods in (Vlachonikolis and Marriott, 1995; Hecht and Honikel, 1995) and/or graphical methods ^{b,c}
> 60 but $\le 80\%$ non-quantified and with at least 25 results quantified.	Produce two estimates using 0 and LOD for all the results less than LOD ^{a,d}	Use methods in (Vlachonikolis and Marriott, 1995; Hecht and Honikel, 1995) and/or graphical methods ^{b,c} . Use with caution if total number of measurements is <100.
 > 80% non-quantified, or if > 60% but ≤80% non-quantified and with <25 results quantified 	Produce two estimates using 0 and LOD for all the results less than LOD ^{a,c}	None practicable
		GEMS/Food-Euro (1995)

UB = substitute with LOD

EFSA (2010) guidelines


□If mean with / without substitution not different, then substitute 0s with LOD (= UB)

Fit data to a not-censored distribution (parametric model)

Otherwise, see flow chart

- Fit data to a distribution (parametric model)
- Not censored (LB and UB)
- Censored (LOD as left censored)

□But again, we need raw data to do this (e.g., from monitoring, like EFSA 2020 aflatoxins assessment)

Semi-probabilistic exposure assessment

□Simulate 3 scenarios [min, mean, max] OR □Build a triangular distribution with [min, mean, max]

Mean

Meta-analysis of studies from database or online, OR

• Pooled mean = $\frac{N1.M1+N2.M2+Nn.Mn}{N1+N2+Nn}$

Min (LOD?) / Max (highest observed value?)

OR, select one single study and use their [min, mean, max]

