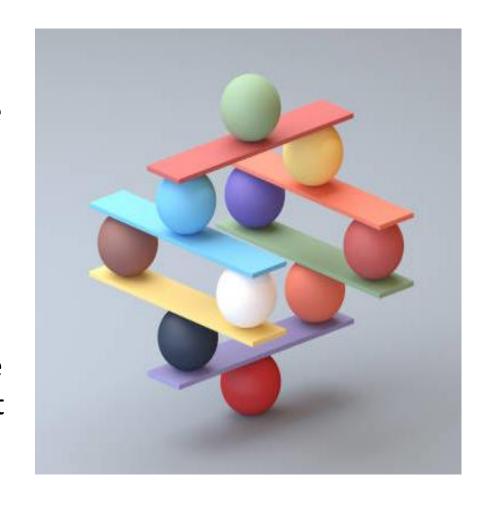


Foundations of the Development of a Food Monitoring Program

Day 2 – 27 February, 2023

11:00 - 12:00


Definition

- ☐ Monitoring is defined as "a system of repeated observation, measurement and evaluation for a defined purpose, carried out on samples representative of individual foods or the diet in a country, or a given area within a country" (FAO/WHO).
- □Survey = one time thing
- ☐ If Survey indicates a Health risk, then Monitoring is needed
- □ If control measures have been introduced, then Monitoring is needed.

def-i-ni-tion / defə|niSH(ə)n / noun: a statement of the exact meaning of a word.

Differences between monitoring and surveillance

- The ultimate objectives of both food surveillance and food monitoring are to protect the consumer from acute and chronic intoxications and food-borne infections, to improve the management of food resources and prevent losses in food supplies.
- ☐ Food monitoring is a more long-term activity designed to provide baseline data and to show time-trends in food contamination.
- ☐ Food surveillance activities are generally designed with the more immediate objective of preventing food which is unfit for human consumption reaching the consumer.

Why Food Monitoring?

Monitoring may be carried out for a variety of purposes:

- ☐ To establish a baseline and determine changes in the levels of a contaminant in food with time
 - Provides a means of detecting increasing levels of contaminants in food before they become so high they
 pose a direct threat to human health when ingested.
 - This is especially important when the contaminant does not produce ill-health soon after ingestion of the contaminated food but first after an interval of several months or even years.
 - Important if the plant or animal (food) analysed can concentrate or accumulate contaminants from the environment.
- ☐ To give an indication of the effectiveness of measures introduced to reduce food contamination.
- ☐ To check that the levels of contaminants in food do not exceed established standards or guidelines, i.e. regulatory or compliance purposes.
 - In this case "monitoring" = "surveillance"

Why Food Monitoring? (cont'd)

Country without a system for the monitoring and control of imports for contaminants will find it difficult to prevent itself being used as a dumping ground for substandard food rejected by other countries.

A country without a system to monitor exported products runs the risk of having it rejected and suffering economic losses.

A monitoring system increases confidence in the quality of the food a country exports and is likely to facilitate international trade and yield better economic returns for the exporting country.

Why Food Monitoring? (cont'd)

Monitoring:

- ☐ For identification of potential food safety issues.
- ☐ Can show how the effect of banning the use of a persistent pesticide
- ☐ To assess the impact of the introduction of new substances or practices in agriculture, food processing, food handling, etc. on food contaminant levels

Planning

- ☐ Major policy decision:
 - Who is in charge ?
 - Ministry (health, agriculture and fisheries, environmental protection, trade, industry, economy, etc...)
 - Planning and coordination
- ☐ Establishment of a Working group to coordinate all monitoring activities
 - By contaminant group
 - heavy metals, pesticides, etc...
 - Or by food commodities
 - Fishes, nuts, etc...

Planning/Group Members

Knowledge needed on:

☐ The food contaminant and it potential use (ex: pesticides or veterinary drugs) in agriculture, horticulture, silviculture; ☐ The targeted food commodity (inter alia food chains, mobility), and its processing and distribution; ☐ Environmental contamination (including water, soil, wild-life, etc.) by the food contaminant and breakdown products thereof, which may lead to environmental contamination; ■Sampling procedures appropriate to the foods to be studied; ☐ Methods used and facilities available for analysing a specific food contaminant in various foods; □ Consumption data (preferably including data on both average consumption and individual intake) and the economic importance of various food commodities; ☐ Toxicology of the food contaminant;

Planning/Sampling

Information needed on:

□ Data from similar surveys or monitoring projects already in operation
□ Epidemiological data on actual or potential health problems related to contaminated food.
□Information on food production and processing, food trade, marketing channels, etc. including any information on rejection of food presented for import or export.
□Information from nutrition surveys and food consumption surveys, especially any indicating the existence of vulnerable groups.
□Information on the use of pesticides in agriculture, horticulture, silviculture (forestry), vector eradication programmes, etc. and the use of drugs in animal husbandry.
□ Information on the release of potential food contaminants into the environment or on the levels of contaminants found by monitoring water, soil, air, etc.
□Information on the resources available to carry out the work.
□Information from research programmes showing the passage of contaminants through food chains.

Planning/Objectives

- ☐ Estimation of daily intake of lead via food:
 - Is it a threat or not?
 - Is there a trend that should be a matter of concern?
 - Is it an issue in certain geographical area or food commodities?
- ☐ Monitoring of Aflatoxins in nuts in a producer country:
 - No problem for exportation
 - Identification of areas where control measures should be improved
 - Protection of consumers' health

Planning/Scope

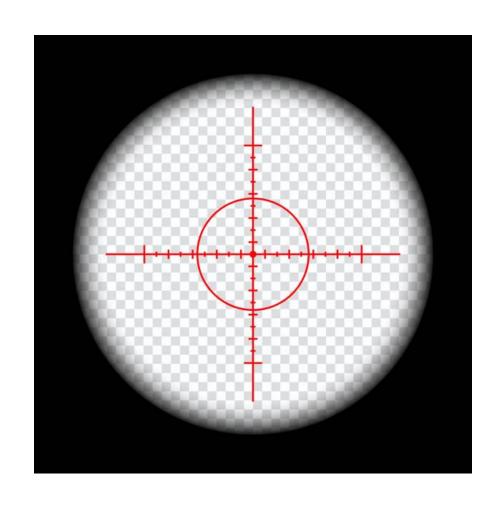
The following factors are of importance when deciding priorities:

- ☐ The potential risk to human health posed by the contaminant.
- ☐ The **frequency** with which a food-contaminant is implicated in intoxications.
- ☐ The **feasibility** of measuring the level of the contaminant in a reliable manner in an adequate number of samples.
- □ The importance of the food in the total diet; **staple foods deserve special attention**.
- ☐ The **economic** importance of the food concerned and the importance the importing/exporting country attaches to contaminant monitoring.

Planning/Scope (cont'd)

The following factors are of importance when deciding priorities.

- ☐ The persistence, ubiquity and abundance of the agent in the environment, its resistance to degradation, the possible conversion to more toxic substances and accumulation in the food chain.
- The **amount of the pollutant** being discharged into the air, rivers, coastal waters, etc. by industry and/or from centres of population and the levels of contaminants found in environmental components other than food.
- ☐ The nature and amounts of pesticides and other chemicals used in agriculture, horticulture and forestry, and of veterinary drugs used in animal husbandry.
- ☐ The **hygienic conditions** prevailing in connexion with the production, packaging, transport, distribution, storage and preparation of food.



Planning/Scope (cont'd)

☐Pilot study:

- Resolution of practical problems
- Possibility to upgrade for a large monitoring project

- ☐ Evaluation of the monitoring project
 - Data on the resources employed
 - Evaluation of the benefits
 - In financial terms (if possible)
 - Reduction of specific foodborne disease

Implementation/Sampling

☐What to sample?

- □ At which point in the production chain?
 - Close to the harvesting/slaughter/production
 - At point of entries and at the wholesale level
 - Sampling at the retail level
- ☐Sampling "as eaten"

Implementation/Sampling

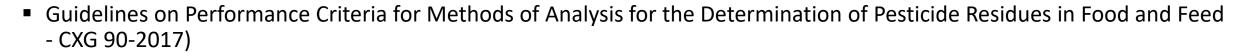
- ☐ Different approaches to sampling depending on potential hazard
 - Examination of each individual food unit
 - Representative samples taken from each lot
 - Representative samples taken from lots chosen according to a predetermined plan or at random
- □Obtaining a representative sample
 - Homogeneity
 - Methods of eliminating bias
- ☐ Sampling in the field
 - Done par experts
 - Records needed
 - Transport conditions are important
- ☐ Establishment of "Food Sample Banks" for food contamination monitoring purposes

Implementation/Sample prep

- ☐ Preparing sample units from field samples
 - Methods depends on the objectives of the programme
 - Standardized methods
 - Records!
- ☐ Sample units for chemical analysis
 - Regulatory (compliance) programmes
 - Preparation should be stipulated by the regulatory framework
 - Projects aimed at showing time-trends in contaminant levels in specific commodities
 - Projects aimed at estimating the intake of a contaminant via food

Implementation/Sample prep (cont'd)

- ☐ The case of total diet study
 - Based on household food consumption surveys
 - Based on local preparation habits
 - Based on different groups consumptions


- ☐ It is country specific
- □ Need large resources and planning

Implementation/Method of analysis

- ☐ Most important part of any monitoring programme
 - Adequate facilities
 - Well-trained personnel
 - Adequate supervision
- ☐ There are many guidelines

- ☐ Methods must be validated and fit for purpose for both the food contaminant and the type of food.
- ☐ Preference is the development of multi-molecules methods vs single methods.
- ☐ Single residue methods are always possible provided that the cost and effort can be justified.
- ☐A national surveillance program should be put in place to verify the robustness of the whole process
- ☐ Care must be taken when comparing results with other countries

Implementation/Quality control

- ☐ To achieve precise and accurate results
- ☐ If possible, use the same method in different laboratories
- ☐ Provide instruction for the personnel
- ☐ Organization of inter-laboratory collaborative study
- ☐ Restricting analysis to (approved laboratories) wich have adequate ressources
- ☐ Periodic inspection of approved laboratories

Presentation of results

- ☐ Identification of the sample
 - Standardized form or Basic information: nature and origin of the sample, date and place of sampling, name of the supplier, etc...
- ☐ Analysis performed
 - Sample preparation
 - The analytical method in details
 - Date and place of analysis
 - Name of the analyst
- Levels of contaminants
 - Units

Statistical parameters

- □ Application will depend on the food and the nature of the contaminant
- ☐ Importance of the statistical distribution of the results
- ☐In general:
 - Number of samples analysed, median, average, 90th percentile
 - Standard deviation, variance, standard error for normal distributions
 - Detection limit!
 - Samples below LOD should be considered at half of LOD (not zero).

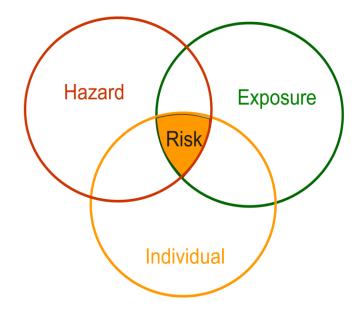
Data handling / presentation / classification

- ☐ Two main functions:
 - To collect, appraise, process, store and retrieve data generated and present it to the user in an appropriate manner
 - To facilitate the management of the programme
- ☐ Manual handling then computer based systems when there are too much data
- □ Data should be stored at one place (per monitoring projects)
- ☐ Data calling for immediate action
 - Screening of all results at the national center and any alarming levels of contaminant recognized and appropriate action taken
 - Screening of results at the laboratory
- ☐Other data

Collection and handling of data on sampling and analysis

- ☐ Sampling data form filled by the person taking the sample
- ☐ Analysis data form filled by the analyst
- □ Validation that sampling and analysis reach the agreed criteria
- "suspect" samples should not be combined with representative samples
- ☐ Double-check results coming from different laboratories
- □Only data which satisfy the agreed criteria are then entered into the central data file(s).

Data outputs


- ☐ Standard summaries
 - Basic descriptive statistics
 - Summarization by sampling, location or laboratory
 - To follow progress of the programme
- ☐ Special tailored compilations of data
 - Association with other information
 - Data on the production or consumption of the food
 - Levels of contaminants in other media
 - Climatic conditions
- □ Data mining?
- ☐ Storage and retrieval
 - At the center that handle the project (+ back up)
- ☐ Publication
 - Scientific publication
 - Official reports
 - Good way to increase consumers's trust
- ☐ Progress reporting to improve project management

Use of Data

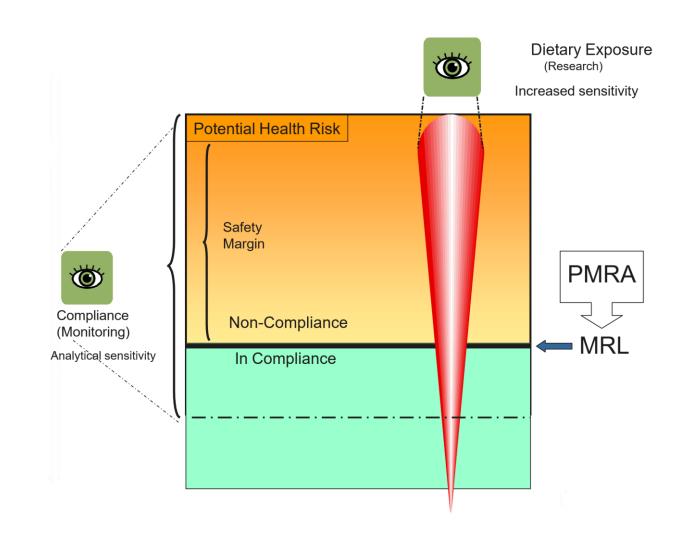
- ☐ Preventing contaminated food from reaching the consumer
 - Presence of contaminants at a high level
 - Action taken before sales (imports, etc..)
 - System of food recall for products already on the tablets
 - Alert system for consumers and for foreign countries
- ☐ Estimating the intake of contaminants via food
 - For long term risks
 - Need of data form other sources of ingestion
 - For the whole population and subgroups
- ☐ Based on (total diet study results or individual food results) x Food consumption
- ☐ Do not forget other sources of intake

Use of Data/Need for and effect of measures

- ☐ Control of pesticide use
 - Indication of potential bad agricultural practice → observation of corrective measures with monitoring
- □ Control of the use of veterinary drugs in animal husbandry
 - Undesirable high levels → Restriction on access to veterinary drugs
- ☐ Chemical contamination during processing and handling
 - Changement of processing techniques
 - Improvements in packaging materials
- ☐ Environmental pollution
 - If the source can be identified → Reduction or elimination
 - Estimation of the threat to human health and economic consequences

Use of Data

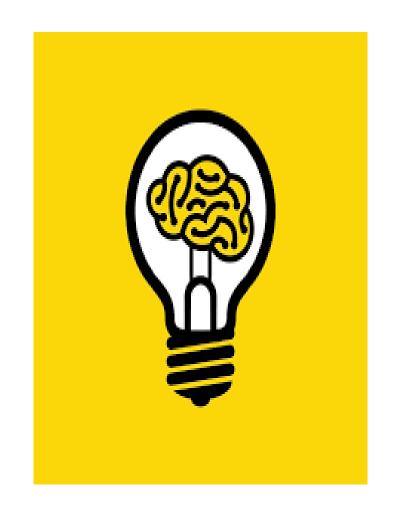
- ☐ Help for the setup of a system of import control (surveillance)
 - For certain imported food and specific contaminant
 - For exporting countries without monitoring programme
- ☐ For export control
 - Help for bi or multilateral agreements
 - No duplication of control activities
 - Increase purchaser's confidence
- ☐ Introduction of new substances
 - New pesticides
 - New production techniques
- ☐ Localisation of sources of food contaminant
 - From geographically well-defined areas
 - E.g Identification of problematic factory
 - o E.g Identification of distances for contamination via atmosphere



Use of Data (cont'd)

☐ Establishment of Maximum (Residue) Limits

☐ Correlation with contaminant levels with human diseases


☐ Identification of research problems

Conclusion

- ☐A lot of planning and preparation
- ☐ Resources **needed and secured** before starting
- ☐ Sampling is not trivial
- Analysis is actually the part that people know the most about
- ☐ The handling of data is key
 - Storage of data
 - Use of data
 - What do to do with it
 - Corrective measures
 - Monitoring of new substances
 - Identification of problems (environmental contamination)
 - Import/Exports
- ☐ Risk communication is also important

