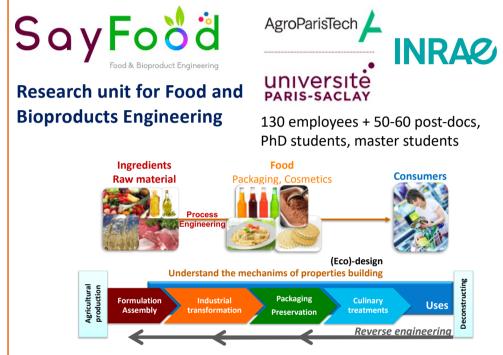


GLOBAL FOOD REGULATORY SCIENCE SOCIETY

GFoRSS is a Disciplinary Organization of IUFoST, devoted to Food Regulatory Science

Plateforme d'Analyse des Risques et d'Excellence en Réglementation des Aliments

GFoRSS Capacity Building Program Food Contact Materials: International Regulatory Framework


Introduction to Food Contact Materials and their Interactions with Food Sandra Domenek

PR AgroParisTech

Chaire CoPack (Fondation AgroParisTech) – UMR SayFood (AgroParisTech, INRAE, Université Paris-Saclay) – UMT SafeMat (LNE/AgroParisTech)

February 22, 2022 Virtual Event

UMR SayFood / Chaire CoPack / UMT SafeMat

- Mechanistic and dynamic understanding of the development of the functionalities of complex systems from renewable resources under the influence of process conditions
- Consideration of user expectations, sustainability criteria and innovative design objectives

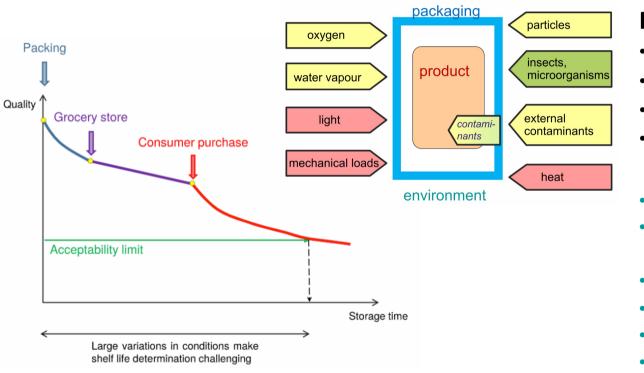
LABORATOIRE NATIONAL DE MÉTROLOGIE

Research and development unit for safety of plastic food packaging

- Develop predictive mathematical models for safety evaluation along the supply chain
- Expertise for industrials and authorities

GFORSS GLOBAL FOOD REGULATORY

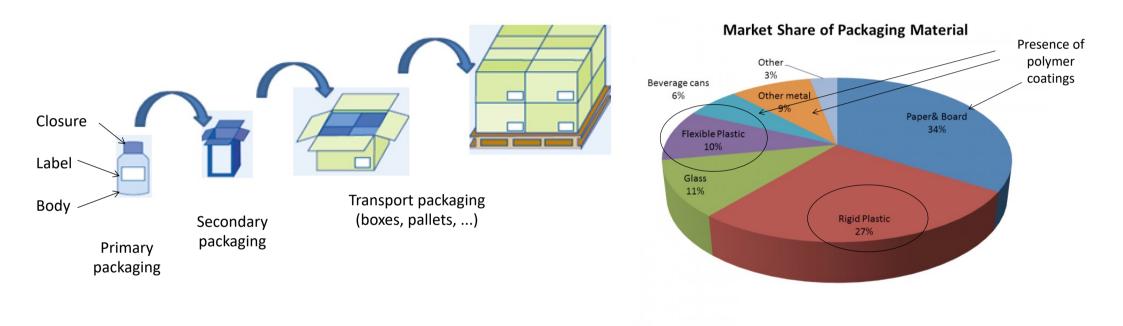
Outline


- Introduction to food packaging
- Focus on plastics
- Food/packaging interactions quality and safety of foods
- Food packaging in the circular economy
- New challenges for safety

	E	
Ľ]

Packaging is an active partner of the supply chain

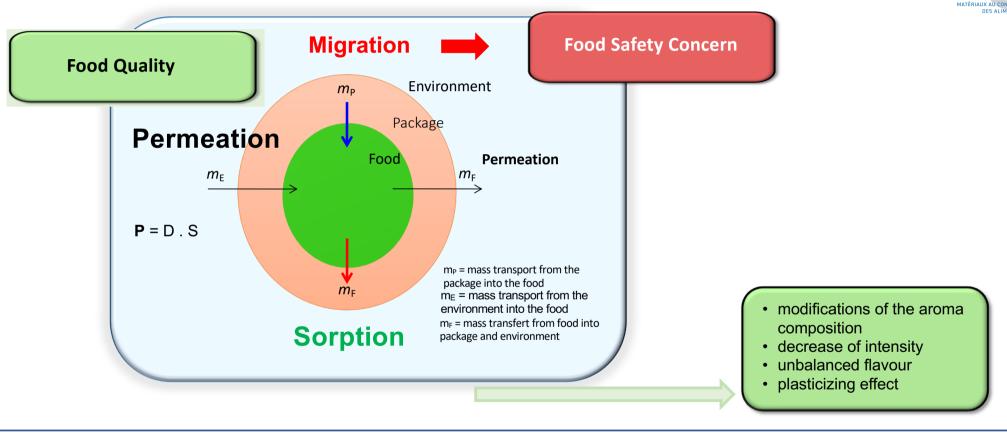
Agricultural products are seasonal and produced far from most consumers.



Functions of Packaging

- Transport
- Portionning
- Conservation
- Communication
- Protection against mechanical impact
- **Protection** against microbial, chemical, and physical **contamination**
- Protection of sensorial quality
- Communication, presentation, selling
- Easy use of packed food
- Decreasing ecological footprint the total service offer

GFSRSS GLOBAL FOOD REGULATORY


Packaging system

https://www.foodpackagingforum.org/food-packaging-health/food-packaging-materials; 15/10/2018

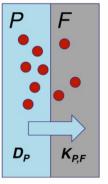
GFSRSS GLOBAL FOOD REGULATORY

Interactions between food and packaging

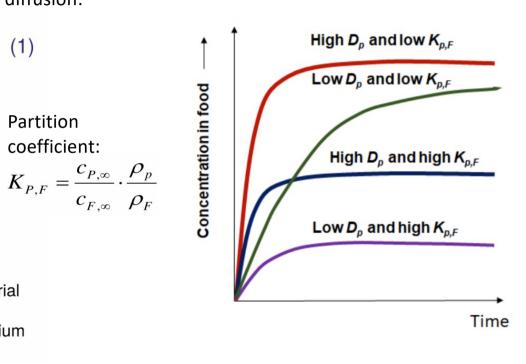
GFORRSS GLOBAL FOOD REGULATORY

Transport mechanisms in polymers

Partition


coefficient:

Migration \rightarrow **Diffusion process**


- Diffusion is the rate • limiting step
 - Free volume of the polymer
 - Size of the migrant •
 - Temperature •
- Equilibrium value ٠ determined by partition coefficient

Fick's second law of diffusion:

 $\frac{\delta c}{\delta t} = D \frac{\delta^2 c}{\delta x^2}$ (1)

P - polymeric material (film, sheet) F - contacting medium (tood simulant)

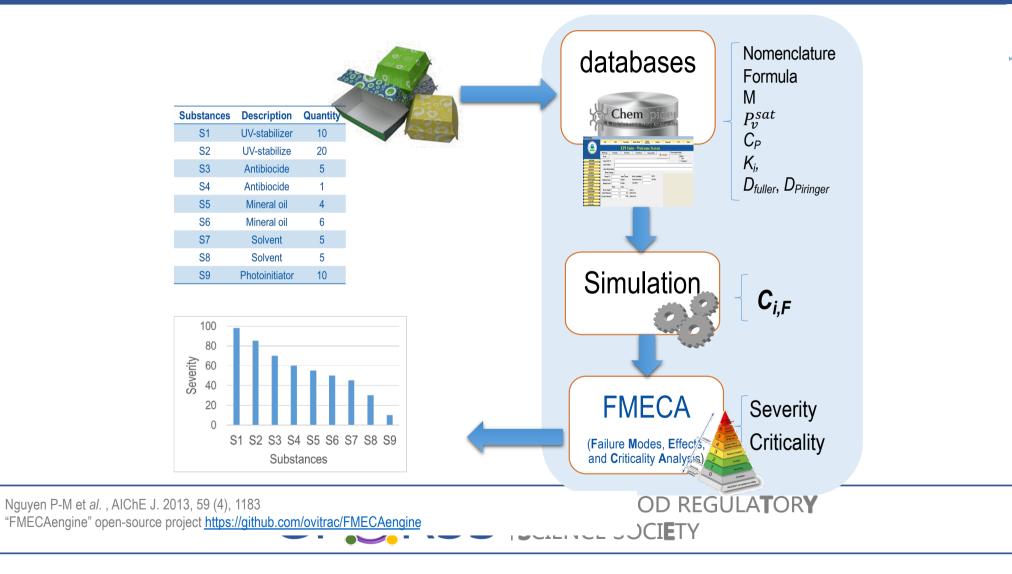
GFORSS GLOBAL FOOD REGULATORY

Evaluation of migration – assessment of exposure

Migration experiments

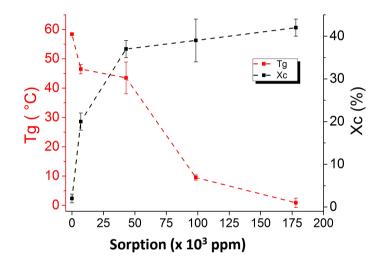
- Immersing strips
 - Polymer of known thickness and surface area in food simulant (double side contact)
 - Measure of concentration of migrant in the food simulant
- Migration cell
 - Single side or double side contact of a given surface with the food simulant
 - Measure of concentration of migrant in the food simulant

• Migration modeling


- General requirements and assumptions
 - Plastic material assimilated to a polymer film of constant thickness in contact with a food simulant of finite and constant volume
 - Migrant distributed homogenously in the film
 - No boundary resistance for mass transfer
 - Interaction between polymer and food is neglectable and no swelling occurs
 - Partition coefficient is constant

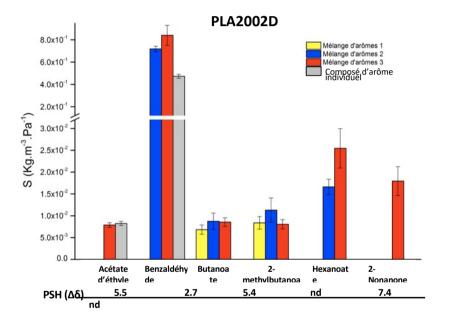
Difficulty : Analytical chemistry, time consuming

Difficulty : Availability of data


GFORRSS GLOBAL FOOD REGULATORY

Migration modeling – FMECA tool

Issues associated to interactions food/packaging


Morphological changes of the polymer

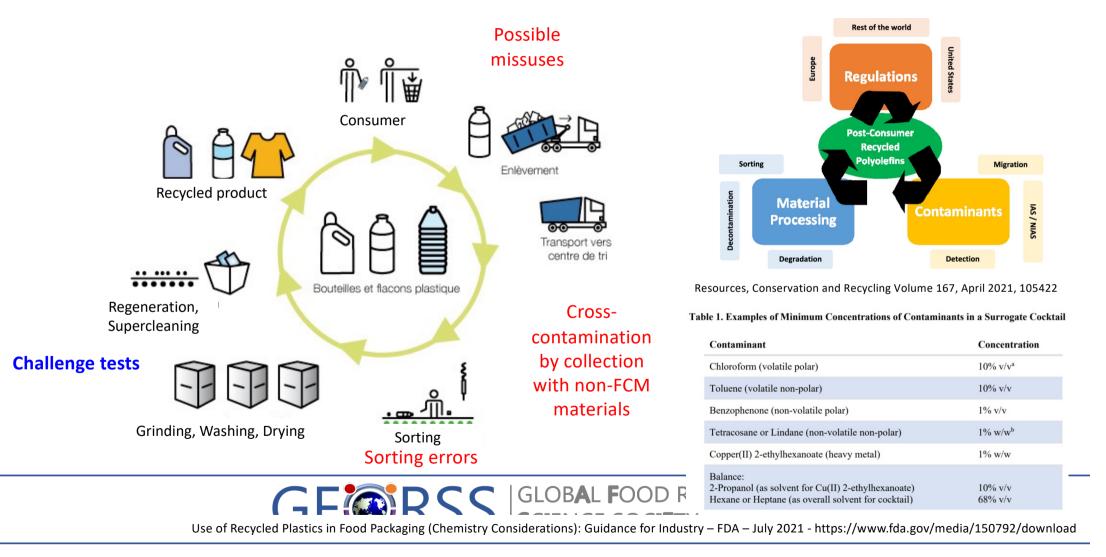
Decrease of Tg and induced crystallization of PLA

Colomines G, Ducruet V, Courgneau C, Guinault A, Domenek S, Polymer International. 2010, 59, 818-826.

Aroma scalping caused by sorption

Synergistic sorption of aroma compounds in PLA

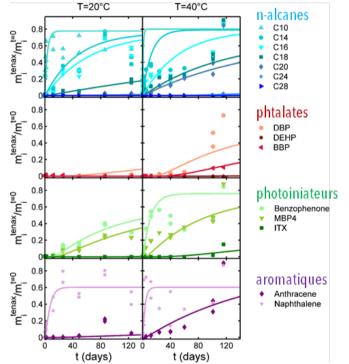
Salazar, R.; Domenek, S.; Courgneau, C.; Ducruet, V., *Polym. Degrad. Stab.* **2012**, 97, (10), 1871-1880.


GLOBAL FOOD REGULATORY SCIENCE SOCIETY

Plastics in the circular economy - recycling

GFSRSS GLOBAL FOOD REGULATORY

Contaminants – challenge for recycling


Challenge – non targeted analyis of contaminants

	Random unknown		Systemic SA MATERIALS J known		
MIGRANTS NIAS Starting substances Monomers (residual/break-down) Catalysts Side products Impurities	Life cycle	New sourcing	Degradation products	Reactives and products	
Side products Impunites Dreak-down products products Anti- oxidants Anti- statics Slip additives Plasticizers Dyes Fillers Pigments Biocides UV stabilizers	 Contact with the environment Contact with food Recycling and reuse Misuse 	 Formulation with by- products Biocomposites Biodegradable polymers 	 Degradation of the polymer Degradation of additives 	 Polymers and oligomers Catalyst residues Solvents Impurities 	

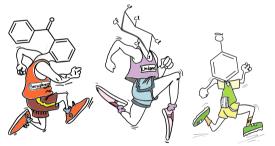
Confirmed risks for paper and plastic

Table 4: EU legal requirement for safety assessment of plastics substances under selected regulations

Plastics substance type	EU 1907/2006 REACH ^s	EU 10/2011 plastic FCMs ⁶	EU 282/2008 Recycled plastic FCMs	EU 1272/2008 CLP ⁷
Monomers	\checkmark	\checkmark	\checkmark	\checkmark
Polymers	X	√ 8	V 9	\checkmark
Catalysts	\checkmark	\checkmark	\checkmark	\checkmark
Polymerisation agents	\checkmark	x	x	\checkmark
Polymer stabilisers	X 10	\checkmark	\checkmark	\checkmark
Solvents	\checkmark	x	x	\checkmark
Other additives	\checkmark	\checkmark	\checkmark	\checkmark
Colourants, pigments	\checkmark	x	x	\checkmark
NIAS ¹¹	x	V 12	V 13	x

. .

Nguyen et al., Food Additives and Contaminants. **2017**,34,1703-20


A circular economy for plastics – Insights from research and innovation to inform policy and funding decisions, Jan 2019, EU Commission

GFORRSS GLOBAL FOOD REGULATORY

14

Conclusion – new challenges for safety

- Risk assessment and management of unknown substances – development of methods for the prediction of exposure
- Ignorance of acceptable exposure limits (acute toxicity, endocrine disruption taking into account cocktail effects)
- Assessment of migration / exposure below analytical detection limits
- Assessment of functional barriers
- Traceability of recycled materials, containers and their decontamination
- Management of cross-contamination during collection, sorting, recycling
- Analysis of NIAS throughout the life of the container taking into account the aging of materials

Modelling approaches for evaluation of migration

GFSS GLOBAL FOOD REGULATORY