

A Proposed Approach to Address Data Gaps Through Data Mining Initiatives

1ST GLOBAL FOOD REGULATORY SCIENCE SYMPOSIUM 15th Dubai International Food Safety Conference (DIFSC) 20 November 2021

Amine KASSOUF, PhD

Mrs. Joyce Haddad

Research Scientist - GFoRSS

Expert - GFoRSS

Outline

- > Introduction: Importance of Data Availability for Food Risk Analysis
- Current Situation in the Arab Region
- Proposed Methodology through Data Mining
- Conclusion and Future Perspectives

Introduction

Food analysis is a key component in the healthy function and performance of a food control system.

Sound decision making relies upon the **availability** and **accuracy** of **scientific data**, to inform the risk analysis process: the foundation for establishing responsible regulatory measures.

The investment in data availability to support food regulatory measures is one the key elements of the GFoRSS mandate.

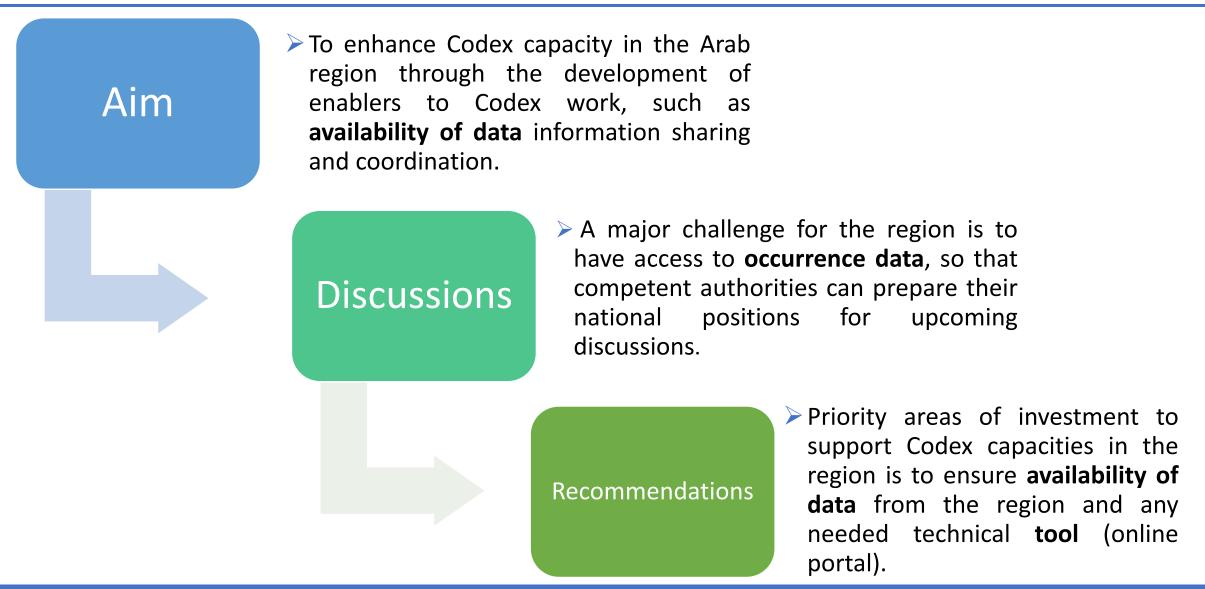
Current Situation in the Arab Region

A **3-day Codex Colloquium** for the Middle East and North Africa Region was held in Dubai, United Arab Emirates, from **12 to 14 September, 2021**.

67 participants from **12 countries** were physically present and over **120** attended virtually

Organized by

Faculty of Agriculture and Food Sciences



With the partnership of


- Industry Advanced The Ministry of and • Technologies of the UAE
- The National Codex Committee for the United • Arab Emirates (NCC)
- Abu-Dhabi Agriculture and Food Safety Authority ٠ (ADAFSA)
- The Dubai Municipality ٠

Current Situation in the Arab Region

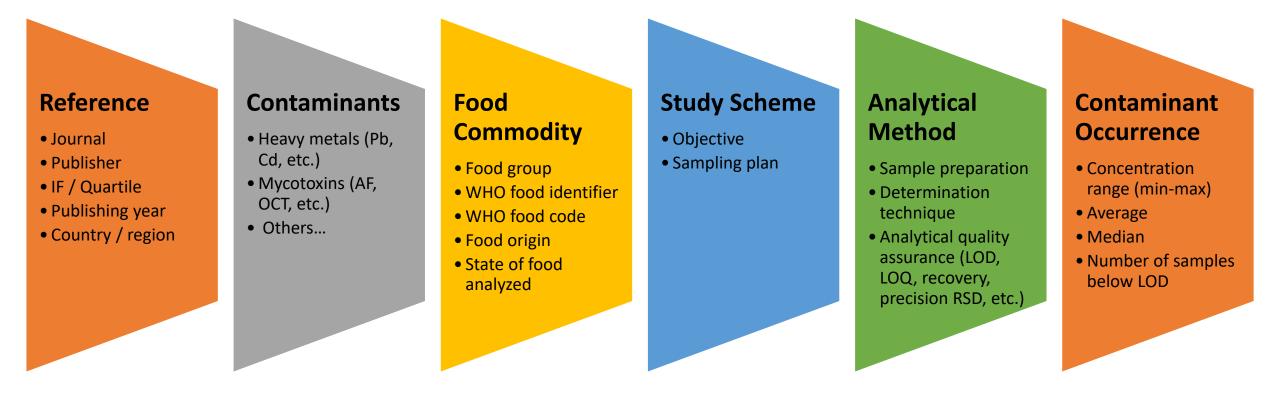


Proposed Methodology

Proposed Methodology:

Data Mining of Published Data

- 1. Systematic scanning of major scientific search engines and databases
 - > Topic selection.
 - Establishment of the pool of articles related to the topic using well constructed research queries.
 - Start with research engines (Scholar google, Web of Science, etc.).
 - Scan scientific databases (ScienceDirect, Taylor and Francis, Springer, Wiley online library, MDPI, etc.).
 - Use of a reference manager to save time formatting citations and organize all this material (*e.g. Mendeley*).
 - Exclusion and inclusion criteria based on: journal properties (IF, Quartile, etc.), analytical quality of the data, etc.

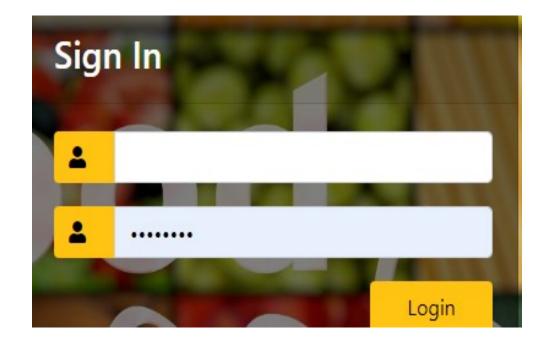

WEB OF KNOWLEDGE

THOMSON REUTERS

2. Data Retrieval: after establishing the pool of articles related to the topic of interest, data is extracted respecting the following fields:

2. Data Retrieval: extracted data is organized based on contaminant and on food group/identifier, into an Excel sheet.

	Α	В	С	D	E	F	G	Н	I.
1	Tag	Year	Country/Region	Contaminant	Food group	WHO Food Identifier	WHO Food Code	Food Origin	State of Food Analyzed
2	1	2013	Lebanon	Fe	Legumes and pulses	Chick-pea	VD 0524	Locally consumed	Canned (liquid+seeds)
3	1	2013	Lebanon	Sn	Legumes and pulses	Chick-pea	VD 0524	Locally consumed	Canned (liquid+seeds)
4	1	2013	Lebanon	Pb	Legumes and pulses	Chick-pea	VD 0524	Locally consumed	Canned (liquid+seeds)
5	1	2013	Lebanon	Cd	Legumes and pulses	Chick-pea	VD 0524	Locally consumed	Canned (liquid+seeds)


Study Objective	Sampling Plan	Analytical Technique	Analytical Quality Assurance	LOD	Unit	LOQ	Unit	Recovery (%)	Concentration Range-Min	Concentration Range-Max	Average	Unit	RSD (%)	Number of Samples below LOD
Migration from tinplate-coated	45 cans / Food canning	Microwave	Internal quality assurance	2	mg/kg	9.5	mg/kg	96-97	<loq< td=""><td>27</td><td>N/A</td><td>mg/kg</td><td>7</td><td>0</td></loq<>	27	N/A	mg/kg	7	0
cans into chickpeas	industry	digestion/FAAS	only	2	1116/ 116	5.5	116/16	50 57	~LOQ	27	N/A	···6/ ^6	,	0
Migration from tinplate-coated	45 cans / Food canning	Microwave	Internal quality assurance	8.5	malka	32	mg/kg	80-91	<loq< td=""><td><loq< td=""><td>N/A</td><td></td><td>5.7</td><td>- 11</td></loq<></td></loq<>	<loq< td=""><td>N/A</td><td></td><td>5.7</td><td>- 11</td></loq<>	N/A		5.7	- 11
cans into chickpeas	industry	digestion/FAAS	only	0.5	8.5 mg/kg		IIIB/ KB	00-91	LUQ	<luq< td=""><td>N/A</td><td>mg/kg</td><td>5.7</td><td>all samples</td></luq<>	N/A	mg/kg	5.7	all samples
Migration from tinplate-coated	45 cans / Food canning	Microwave	Internal quality assurance	0.059	malka	0.076	malka	88-96	<loq< td=""><td>0.0</td><td>N1/A</td><td></td><td>N1/A</td><td>0</td></loq<>	0.0	N1/A		N1/A	0
cans into chickpeas	industry	digestion/GFAAS	only	0.059	mg/kg	0.076	mg/ kg	88-90		0.6	N/A	mg/kg	N/A	U
Migration from tinplate-coated	45 cans / Food canning	Microwave	Internal quality assurance	0.000		0.005		00 100	0.0146	0.0252		/1	11.0	0
cans into chickpeas	industry	digestion/GFAAS	only	0.003	mg/kg	0.005	mg/kg	g 89-102	0.0146	0.0252	N/A	mg/kg	1.4 - 8	U

3. Online Portal: data is imported to an **online portal**, accessible at data entry level (Admin) or data consultation (User).

3. Online Portal: login

Login Window Credentials based on role: Admin or User

3. Online Portal: data entry – for admins only

Chc		o file chosen		Upload								⊢ Ao
Copy	Excel CSV											
									:	Search:		
Year [↑]	Country	Contaminant	Food Group ^{↑↓}	Food Identifier	Food Code	Food Analyzed ^{↑↓}	StudyObjective	SamplingPlan	AnalyticalTechnique	Search: QualityAssurance	LOD 1	L L
Year ^{↑.} 2021	Country	Contaminant ¹¹ Pb			Code 1		StudyObjective Evaluate infant formula contamination by lead, cadmium and arsenic.	SamplingPlan ^{1]} 39 brands*2 batches of each = 78 samples			LOD 0.05	L C

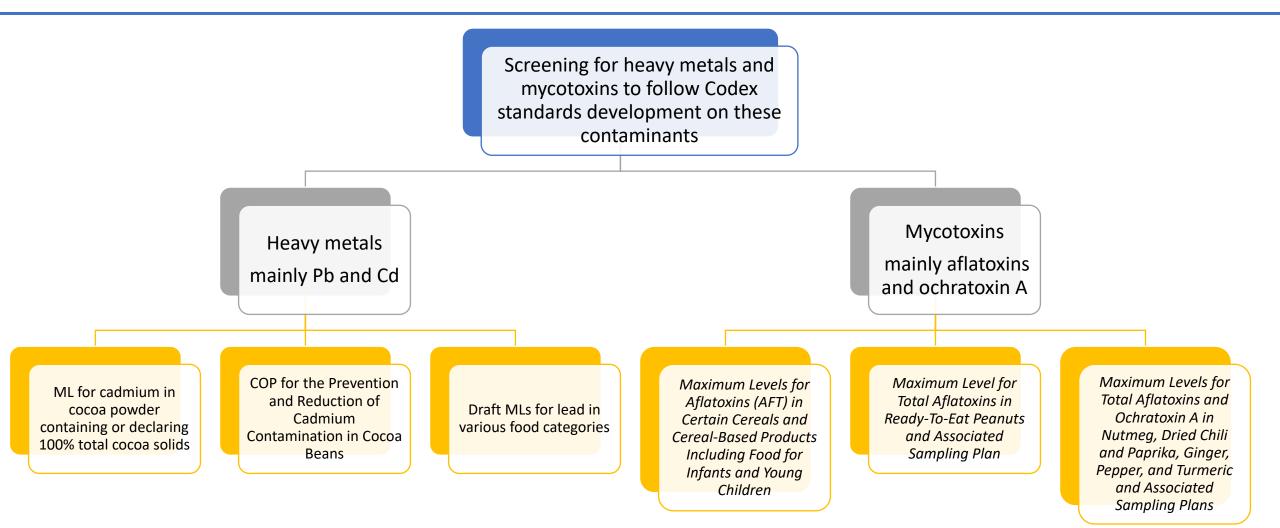
Data Entry by Direct Upload

	Year: *	Country: *	Contaminant: *	Food Group: *			
	Year	Country	Contaminant	Food Group			
Dashboard	Food Identifier: *	Food Code: *	Food Origin: *	Food Analyzed: *			
Select File :	Food Identifier	Food Code	Food Origin	Food Analyzed			+
Choose File No file chosen	Study Objective: *	Sampling Plan: *	Analytical Technique: *	Quality Assurance: *			
	Study Objective	Sampling Plan	Analytical Technique	Quality Assurance			
Copy Excel CSV PDF	LOD: *	LOD Unit: *	LOQ: *	LOQ Unit: *			
Show 10 ¢ entries	LOD	LOD Unit	LOQ	LOQ Unit			
	Recovery: *	Concentration: *	Average: *	Median: *	Search:		
	Recovery	Concentration	Average	Median			
Year ¹¹ Country ¹¹ Contaminant 2021 India Pb	RSD: *	Samples Below: *	Referece: *		QualityAssurance		L
2021 India Pb	RSD	Samples Below	Referece		NonValidated	0.05	n
2021 India Pb				Save Close	NonValidated		

Data Entry Manually

3. Online Portal: data access – for users

Copy Excel CSV PDF Show 10 + entries Search:													
Year ^{↑↓}	Country 1	Contaminant ^{↑↓}	Food Group ^{↑↓}	Food Identifier ^{↑↓}	Food Code ^{↑↓}	Food Origin ^{↑↓}	Food Analyzed ^{↑↓}	StudyObjective 1	SamplingPlan ^{†↓}	AnalyticalTechnique 斗	QualityAssurance 1	LOD 1	LC
2021	India	Pb	ma ki	Infant formula	teri	Localy consumed	powder	Evaluate infant formula contamination by lead, cadmium and arsenic.	39 brands*2 batches of each = 78 samples	Microwave digestion - ICP-MS	NonValidated	0.05	nç
2021	India	Pb		Infant formula		Localy consumed	powder	Evaluate infant formula contamination by lead, cadmium and arsenic.	39 brands*2 batches of each = 78 samples	Microwave digestion - ICP-MS	NonValidated	0.05	nç
2021	India	Pb		Infant formula		Localy consumed	powder	Evaluate infant formula contamination by lead, cadmium and arsenic.	39 brands*2 batches of each = 78 samples	Microwave digestion - ICP-MS	NonValidated	0.05	nç


Screening of the Arab region on a country basis

Algeria
Bahrain
Comoros
Djibouti
Egypt
Iraq
Jordan
Kuwait
Lebanon
Libya

Mauritania
Morocco
Oman
Palestine
Qatar
Kingdom of Saudi
Arabia
Somalia
Sudan
Syria
Tunisia
United Arab
Emirates
Yemen

Short-term Strategy

Conclusion

The Arab region needs more accessible data to support food regulatory decisions and to prepare for Codex discussions and position taking.

GFoRSS will actively contribute to make data available and more accessible through its ARAB CODEX INITIATIVE.

The data mining will tackle any new contaminant of interest for the region.

This data mining project will also help to highlight gaps in data so regulatory control, research, funding, universities, etc. can be oriented towards addressing these topics in future works.

